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EXECUTIVE SUMMARY

The U.S. Geological Survey recognizes several 
major plays for nonassociated gas in strata that under 
lie Naval Oil Shale Reserves 1 and 3, Colorado, and 
Reserve 2, Utah. All of the plays are for nonassociated 
gas. For purposes of this study, plays without gas/ 
water contacts are separated from those with such con 
tacts. Continuous-saturation accumulations are essen 
tial ly single fields, so large in areal extent and so 
heterogeneous that their development cannot be prop 
erly modeled as field growth. Fields developed in gas- 
saturated plays are not restricted to structural traps and 
they are developed in any structural position where 
permeability conduits occur such as that provided by 
natural open fractures. Other fields in the region of 
the Reserves have gas/water contacts and the rocks 
are water-bearing away from structural culmination's.

Hydrocarbons hypothesized to underlie Reserves 
1 and 3, Colorado were assigned to five major plays 
for nonassociated gas. The are: Cretaceous Mesaverde 
Gas-Saturated 2007; Wasatch Formation Gas-Satu 
rated 2008; The Mancos & Associated Rocks 202IP; 
Cretaceous Dakota Group & Jurassic Morrison Fm 
20IIP; and the Paleozoic strata 2005P. Hydrocar 
bons that underlie Reserve 2, Utah were assigned to: 
Eastern Wasatch Gas-Saturated 2015; the Western 
extension of the Wasatch Formation 2016; Wasatch 
Formation Transitional 2017; the Basin Flank 
Mesaverde Group 2018; The Mesaverde Group Tran 
sitional 2019; Cretaceous Dakota Group & Jurassic 
Morrison Fm 2011U; and Paleozoic strata 2021U.

The plays can be assigned to two groups. Group I 
plays (2007, 2008, 2021P, 201 IP, 2005, 2015, 2016, 
2018, 2011U and 2021U) are those in which gas/wa 
ter contacts are rare to absent and the strata are gas 
saturated. Group II plays (2019,2017) contain reser 
voirs in which both gas-saturated strata and rocks with 
gas/water contacts seem to coexist.

The quantitative results of this assessment study 
are presented in Table 1.

INTRODUCTION

U.S. Naval Oil Shale Reserves 1 and 3 are located 
near the southeast margin of the Piceance basin, Colo 
rado. Reserve 2 is located in the south-central part of 
Uinta Basin, Utah. The Reserves are underlain by 
petroliferous rocks of several ages that have yielded 
oil and/or gas in nearby fields (Figs. 1 and 2)

The combined Uinta-Piceance (UP) basin is a 
structural and topographic basin that trends east-south 
east in northeastern Utah and northwestern Colorado 
and roughly parallels the Uinta Mountains to the north. 
It is an asymmetrical structural trough filled by as 
much as 5,000 m (17,000 ft) of Cretaceous 
Maastrichtian and Paleogene sedimentary rocks. The 
total sedimentary-rock section reaches a thickness of 
greater than 30,000 ft over much of the area with Cre 
taceous and Tertiary strata locally comprising more 
than 2/3 of that thickness.

PETROLEUM GEOLOGY

Oil and gas compositions indicate that at least three 
petroleum systems occur within the greater Uinta- 
Piceance basin. The nonassociated gas fields produce 
mostly from Mesozoic reservoir rocks with some gas 
migrating into the overlying Tertiary strata. Most of 
this gas is thought to originate from the underlying 
Cretaceous Mancos Formation and (or) Mesaverde 
Group, and it is interpreted to be part of one or more 
gas systems. The second petroleum system is repre 
sented by the relatively high sulfur oil in the Ashley 
Valley and Rangely oil fields. This oil probably origi 
nated from the Phosphoria Formation source rock 
sometime in late Mesozoic time. In the third system, 
production from the Green River Petroleum system is 
largely restricted to the Uinta Basin in northeastern

1



Table 1. Resources (potential additions to reserves) of Nonassociated Gas In Naval Oil Shale Reserves.

Mean Std Dev F95 F75 F50 F25 F05
EUR/well
(mean) Comment

Naval Oil Shale Reserve 1, Colorado

Play 2007 Mesaverde
Gas in billions of cubic feet 

670 203 393 

321 119 167

524

236

641
301

Play 2008 Wasatch Formation Revised 4/20/94

Gas in billions of cubic feet
144.8 44.5 84.4 113 138.4

Play 2005P Paleozoic Strata Gas
Gas in billions of cubic feet
0.48 0.472 0 0.19 0.37

Play 2011P Dakota & Morrison Gas saturated
Gas in billions of cubic feet

47.46 18.33 23.98 34.43 44.28

Play 2021 P Mancos & Assoc. Gas Saturated
Gas in billions of cubic feet
3.4 1.68 1.4 2.22 3.04

783

383

169.6

0.64

56.94

4.18

1044
542

227

1.35

81.76

6.6

1.88

1.88

0.7

0.2

0.28

0.2

Play 2008 Wasatch Formation
Gas in billions of cubic feet 
63.1 24.3 31.96 45.84

Play 2005P Paleozoic Strata Gas
Gas in billions of cubic feet
0.23 0.31 0 0

58.9

0.15

Play 2011P Dakota & Morrison Gas saturated
Gas in billions of cubic feet
22.76 9.23 11.1 16.21 21.09

Play 2021P Mancos & Assoc. Gas Saturated
Gas in billions of cubic feet
1.63 0.98 0.55 0.96 1.39

75.67

0.33

27.44

2.04

108.5

0.8

40.08

3.5

0.7

0.2

0.2

0.2

80 acre spacing 
160 acre spacing

Play 2007 Mesaverde Gas Saturated
Gas in billions of cubic feet 
315 97 184 246 
198 123 66 114

Naval Oil Shale Reserve 3,

302 369 
168 247

Colorado

493 1.88 
430 1.88

80 acre spacing 
160 acre spacing

Fouch and others Oil and Gas Resources of U.S. Naval Oil Shale Reserves



Table 1. Continued.

Mean Std Dev F95 F75 F50 F25 F05
EUR/well 
(mean) Comment

Naval Oil Shale Reserve 2, Utah

Play 2011U: The Cretaceous Dakota Grp., Jurassic Morrison Fm., & Assoc. Strata
Gas in billions of cubic feet
159.971 60.821 81.698 116.7 149.52 191.58 273.67 0.79

160 acre spacing 
80 acre spacing 
40 acre spacing

Play 2015: Wasatch Gas-Saturated East
Gas in billions of cubic feet
193 120.02 63.94 111.34 163.82 240.95 419.77 1.4 
367 112 214 287 351 429 574 1.4 
734 223 431 575 702 858 1145 1.4

Play 2016: Wasatch Gas-Saturated West
Gas in billions of cubic feet
17.43 12.01 5.12 9.43 14.37 21.89 40.09 1.35

Play 2017: Wasatch Gas-Water Transitional
Gas in billions of cubic feet
119.18 74.6 39.23 68.54 101.02 148.88 260.14 0.74

Play 2018: Mesaverde Basin Flank Gas-Saturated
Gas in billions of cubic feet
32.26 13.37 15.47 22.78 29.8 39 57.44 0.75

Play 2019: Mesaverde Gas-Water Transitional
Gas in billions of cubic feet
78.91 49.51 25.88 45.31 66.83 98.66 172.73 0.59

Play 2021 U: Mancos-Ferron-Frontier Gas-Saturated
Gas in billions of cubic feet
1.64 1.03 0.53 0.94 1.39 2.05 3.61 0.02

Utah. The Green River Formation contains the source 
rocks as well as most of the reservoir and seal rocks 
(some in Wasatch Formation) in this prolific petro 
leum system, and levels of maturity have been suffi 
cient to generate exceptionally large volumes of 
paraffinic high pour-point oil and wet gas. Currently, 
economically viable oil in the Uinta Basin is recov 
ered from the subsurface where the oil is above pour 
point temperatures and is moveable, and where strata 
are especially porous and permeable.

Reserve 1

Reserve 1 lies along the north margin of Reserve 
3 in the Piceance basin, Colorado. Although no gas

has been recovered from Reserve l f reservoirs in the 
adjacent Reserve 3 yields gas from Upper Cretaceous 
reservoirs of the Mesaverde Group. The Paleocene 
and Eocene Wasatch Formation yields gas nearby but 
reservoir quality in this unit is frequently greater than 
that of underlying Cretaceous reservoirs. However, 
reservoir distribution and other problems seem to limit 
production from the Wasatch.

Currently, gas in the Tertiary and Cretaceous strata 
is extracted from fields without gas/water contacts and 
the section is believed to be gas saturated due to the 
concurrent and continuing generation of gas from 
Cretaceous source rocks. The zone of continuous gas- 
saturated Cretaceous strata can be approximated by

Fouch and others Oil and Gas Resources of U.S. Naval Oil Shale Reserves
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Figure 1. Index map of the Uinta and Piceance basins showing: 1 a, principal place names and names of bounding geologic 
features; and 1 b, area of principal hydrocarbon accumulations in sedimentary rocks. Bitumen-bearing sandstones are 
abundant in surface exposures in regions between areas shown as tar sands.
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Piceance Basin 
NOSRs 1 & 3

Moenkopi-Woodside-Thaynes

Figure 2. Chronostratigraphic diagram extending from area of Naval Oil Shale Reserve (NOSR) 2, Uinta Basin, Utah to 
Naval Oil Shale Reserves 1 & 3, Piceance basin, Colorado. Stratigraphic names are those frequently applied by industry to 
the strata.

mapping the surface projection of the trace of the 
boundary between those rocks at the Cameo coal level 
that have reached temperatures approximated by the 
vitrinite reflectance value of Ro 1.1. In this basin, that 
value delineates the area where gas is being generated 
from source rocks in such volume and at such a rate 
that it drives free water from the rock column and

continuously saturates the section with gas. Gas- 
saturated Cretaceous strata are widespread in the basin. 
The region of Wasatch Formation reservoirs without 
gas/water contacts is much smaller than that for Upper 
Cretaceous strata and probably extends over much of 
the region of NOSRs 1 and 3 but not much farther 
north.

Fouch and others Oil and Gas Resources of U.S. Naval Oil Shale Reserves
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NOSR1

Grand Hogback 
NOSR 3 I

coaly & marine Mesaverde

Mancos Shale & assoc sandstones

Dakota & Cedar Mtn

Preliminary diagrammatic W-E cross section at the latitude of Naval Oil Shale Reserves 1 & 3 and that extends from western 
edge of Piceance basin east through NOSRs 1 & 3 to the G rand Hogback. Constructed from surface and seismic information. 
Probable rollover on NOSR 1 is not shown. No vertical exaggeration. Diagonal lines indicate subsurface zone where gas/ 
water contacts are believed to be rare or absent and section is saturated with gas. In this zone, limits of gas-bearing strata 
are not defined by structural traps.

Figure 3.

Reserve 3

U.S. Naval Oil Shale Reserve 3 is located near 
the southeast margin of the Piceance basin, Colorado. 
Reserve 3 yields gas from Late Cretaceous-age reser 
voirs of the Mesaverde Group whose values of matrix 
permeability, exclusive of fracture permeability, are 
commonly below 0.1 md in situ to gas. In addition, 
porosity of reservoirs is commonly less than 10%. The 
Paleocene and Eocene Wasatch Formation yields gas 
but reservoir quality in this unit is frequently greater 
than that of underlying Cretaceous reservoirs.

Currently, gas in the Tertiary and Cretaceous strata 
is extracted from fields without gas/water contacts and 
the section is believed to be gas saturated due to con 
current and continuing generation of gas from Creta 
ceous source rocks. The zone of continuous 
gas-saturated Cretaceous strata can be approximated 
by mapping the trace of the surface projection of the 
boundary between those rocks at the Cameo coal level 
that have reached temperatures approximated by the 
vitrinite reflectance value of Ro 1.1. In this basin, 
that value delineates the area of maximum generation 
of gas from source rocks in such volume that it is be 
ing expelled from the strata into Mesaverde and lower 
WasatcbJbeds at such a rate that it drives free water 
from the rock column and continuously saturates the 
section with gas. The region of Wasatch Formation 
reservoirs without gas/water contacts is much smaller 
than that for Upper Cretaceous strata and probably ex 
tends over much of the region of NOSRs I and 3.

Gas in strata without water/hydrocarbon contacts 
is commonly included in the estimates of unconven 
tional gas. For the most part, successful production 
of unconventional natural gas in the Piceance basin is 
most successful where the strata are fractured natu 
rally and where the rocks have fluid-pressure gradi 
ents more than 0.5 psi/ft.

Reserve 2

Reserve 2 lies southeast of the greater Natural 
Buttes gas field. Natural Buttes field produces asso 
ciated and nonassociated gas from sandstone reser 
voirs of the Upper Cretaceous Mesaverde Group and 
the Paleocene and Eocene Wasatch Formation (Figs. 
4 & 5). Unlike the production at Reserve 3 in Colo 
rado, most gas in the Uinta Basin is produced from 
the Tertiary Wasatch (including Colton and North Horn 
Formations) Formation or temporally equivalent beds 
in the Green River Formation. Production from the 
Mesaverde Group is very limited.

Most of the gas currently being produced from 
Wasatch and Mesaverde reservoirs in the southeast 
Uinta Basin is extracted from fields without gas/wa 
ter contacts and the section is believed to be gas satu 
rated due to concurrent and continuing generation of 
gas from Cretaceous source rocks. The gases from 
the Mesaverde Group and much from the overlying 
Wasatch are almost identical in chemical and isotopic 
composition yet they occur over a depth interval of 
3,500 to 9,3 00 ft. Studies by us indicate that most of 
this gas was is being generated at temperatures

Fouch and others Oil and Gas Resources of U.S. Naval Oil Shale Reserves
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£ Initial thin-skinned thrusting west of the basin.

Figure 4. Diagram showing geologic column and a summary of geologic events for the area of the central part of the greater 
Altamont-Bluebell field, Uinta Basin, Utah and Colorado. Cretaceous strata are those thought to underlie the region of 
Naval Oil Shale Reserve (NOSR) 2.
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Figure 5. Cross section A-A' which extends from outcrops on the southwest flank of the Uinta Basin, through Duchesne and 
Altamont-Bluebell oil fields, to the north-central part of the basin (modified from Fouch, 1 975). Section shows producing intervals 
for many of the basin's fields projected into the line of section. Stratigraphic markers are those commonly assigned to the units 
and follow the usage of Fouch, (1975), Fouch (1976), Ryder and others (1976), and Fouch(1981). Stratigraphic names projected 
into the line of section are those commonly assigned to the units and follow the usage of Fouch (1976), Ryder and others (1976), 
Bryant (1991), and Bryant and others (1989).

approximated by vitrinite reflectance values (Ro) in 
the range of 1.1 to 1.5 percent These studies also 
indicate that the generation of gas under Natural Buttes 
is probably taking place in the lower part of the 
Mesaverde Group. These strata are characterized by 
this level of maturity in the Natural Buttes area and 
this zone of maturation apparently extends to the north 
west margin of Reserve 2 (Fig. NOSR 2-6 ).

The extent of existing production in the Uinta 
Basin, when compared to our maps of productive 
lithofacies, suggest areas of future production. We 
expect that future drilling and production will link 
many smalt oil fields on the south flank of the basin, 
such as Pariette Bench, to the greater Altamont-Blue 
bell and Red Wash fields. This linkage will form a

region of continuous production that extends from the 
northeast end of the Altamont-Bluebell complex east 
to Red Wash and southwest and west to rejoin the 
southwest tip of the Altamont-Bluebell complex. More 
than 750 mbo are expected to be produced from this 
area.

Petroleum-bearing Tertiary strata have been iden 
tified in drill holes distributed over much of the cen 
tral and eastern parts of the Uinta Basin, and 
bituminous sandstones (tar sands or natural bitumen) 
are exposed along the basin's southern margin in the 
Roan Cliffs of NOSR 2. In addition, Tertiary oil res 
ervoirs have yielded oil, east, south, and west of the 
Reserve. However, much of this oil-bearing section 
can be expected to be penetrated under NOSR 2 at

Fouch and others 8 Oil and Gas Resources of U.S. Naval Oil Shale Reserves



depths above 5,000 ft drilling depths. These depths 
are frequently associated with insufficient tempera 
ture to heat the in situ oil above approximately 95° F 
and transform the hydrocarbon into moveable liquid.

Geologic Framework

Paleogeographic maps and cross sections charac 
terize and portray the primary sedimentologic and 
stratigraphic composition of the region's hydrocarbon- 
bearing strata. Most information on the stratigraphic, 
structural and sedimentologic composition of the re 
gions rocks presented herein is done so with illustra 
tions so that the temporal and spacial components of 
the geologic system can be quickly realized.

Paleozoic Strata

Paleozoic strata of interest to this study involve a 
regionally extensive complex of reservoir quality eo- 
lian and associated sandstone, and carbonate beds that 
is bounded on the west and north by nonreservoir 
marine rocks, and on the east and southeast by the 
nonreservoir redbed lithologies, or by uplifted Precam- 
brian rocks. Figures J1.J2, and J3 are paleogeographic 
maps that portray the spatial and temporal distribu 
tion of key lithologies.

Cretaceous and Tertiary Strata

Most reservoirs in existing fields are within len 
ticular fluvial sandstones that occur within two major 
sedimentary systems. Figure 6 illustrates these two 
systems in a chronostratigraphic cross section that 
extends from exposures in central Utah to those along 
the Book and Roan Cliffs that mark the southern edge 
of the Uinta Basin. Figure 7 illustrates many of these 
same strata between Price Canyon and the Natural 
Buttes gas field. In the first sedimentary system, Up 
per Cretaceous impermeable fluvial rock reservoirs 
occur within the Blackhawk, Castlegate, Sego, Neslen, 
Farrer, Tuscher, and Price River Formations which are 
assigned to the Mesaverde Group. A second sedimen 
tary system consists of Tertiary rocks that occur in the 
Maastrichtian to lower Eocene North Horn Formation, 
and in the Paleocene and Eocene Wasatch and Colton 
Formations. Locally, fluvial sandstones of the Eocene 
part of the Green River Formation are tight-gas reser 
voirs but many operators frequently group the fluvial 
Green River reservoirs with those of the Wasatch For 
mation when applying stratigraphic terminology.

Upper Cretaceous Mesaverde Croup and 
Associated Rocks

Paleogeographic maps and cross sections charac 
terize and portray the primary sedimentologic and

stratigraphic composition of the basin's hydrocarbon- 
bearing strata. Figures FR1-FR9 are paleogeographic 
maps that correspond to periods of Cretaceous time. 
The figures collectively indicate the stratigraphic and 
sedimentologic composition of rocks of this age in the 
basin. The maps and section also display stratigraphic 
names frequently applied to these strata,

Paleocene and Eocene Wasatch Formation and 
Associated Rocks

The cyclic nature of the Tertiary units and the 
interbedding of mixed lake and alluvial rocks (Green 
River Formation) with red colored alluvial strata 
(Wasatch, Colton, and FL Union, and North Horn For 
mations) has resulted in some confusion in the appli 
cation of stratigraphic names. Most formational names 
applied in the basin are representative of lithologic 
and depositional facies. As a result, several facies and 
formations can be preserved within a thin stratigraphic 
interval.

Figure FR 10-FR12 illustrate the paleogeographic 
distribution of depositional facies for three periods of 
geologic time in the Paleogene. The maps also dis 
play stratigraphic names frequently applied to these 
rocks.

Reservoir Properties

Overall descriptions and reservoir properties for 
the current hydrocarbon plays adjacent to, as well as 
the anticipated plays in the NOSR areas, are provided 
by Chidsey (1993a, b), Hemborg, (1993), Tremain 
(1993), and Noe (1993a, b).

Reservoir properties for anticipated hydrocarbon 
plays on the NOSR properties are not expected to vary 
significantly from those listed above.

Reservoir properties, where available, for fields 
immediately adjacent to the NOSR areas, are presented 
in Table 2. Where no data have been published, esti 
mates have been made from well logs of selected wells. 
Preliminary data analysis of these wells supported the 
data ranges provided in Table 2.

One caution on the use of well-log derived values 
in these areas. Core data are not commonly available 
in these fields and estimates derived from well-logs 
are subject to error, particularly in the Tertiary and 
Cretaceous sandstones of the Piceance and Uinta ba 
sins where the presence of high percentages of clay 
minerals (e.g., up to 40 percent in the Rulison field 
(Martinez and Duey, 1982)) adversely affect well-log 
response (Kukal, et. al, 1983; Hartmann and 
MacMillan, 1992; Shade and Hansen, 1992). Kukal, 
et al. (1983) provide a comprehensive discussion of 
these sources of error. In short, density logs provide
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Figure 2-6. Stratigraphic diagram B-B' that extends east from the Altamont-BluebeU oil field to the Red Wash and Hells 
Hole areas of the east end of the basin by way of Gate Canyon and Thompson Canyon of the basin's south flank. A 
hypothetical well on Naval Oil Shale Reserve (NOSR) 2 is illustrated to demonstrate the nature and locations of hydrocarbon 
species anticipated. Black dots indicate oil, open circles indicate gas. The Chapita Wells, Buck Canyon, and Uteland Butte 
zones are local names for gas-producing intervals in the Wasatch Formation of the central and eastern part of the basin. 
The Uteland Butte limestone is a local name for units that approximate the lower marker of the Green River Formation. 
Tgr3 is the Shell Oil Company name for the middle marker of the Green River Formation; H is the name for the middle 
marker commonly used by the Chevron Oil and other companies that operate in the eastern part of the basin. The Dark 
Canyon sequence is the siliceous pebble conglomerate at Dark Canyon of Fouch and Cashion (1 979), and the Dark Canyon 
sequence of the Wasatch Formation of Franczyk et al (1992).
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Figure J1. Paleogeographic map showing Early Pennsylvanian paleogeography in the Uinta and Piceance basins. Stratigraphic 
and lithologic components under Naval Oil Shale Reserves can be inferred from these data. Modified from S.Y. Johnson et 
a/., 1992.
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Table PI. Regional reservoir properties of strata that 
underlie NOSR areas (Robertson and Broadhead, 1993)

Play

Green River 
Formation

Wasatch 
Formation 

Uinta Basin 
Piceance basin

Mesaverde Group

Mancos "B"

Dakota Sandstone

Porosity
%

15

13 
7-15

12

11

13

Permeability 
tnd

0.1 
0.16-1.0

0.1

0.1

0.1

Well 
spacing 

acres

160/320

40 
160

40/160

160

320/640

the most reliable porosity values but these are gener 
ally higher than core values and may be in error by up 
to 4 porosity units, even after correction; the presence 
of large volumes of authigenic clays drastically re 
duces permeability and this, in rum, leads to variable 
invasion profiles and reduced resistivity and SP val 
ues. All this results in the high formation water satu 
rations (Sw), ranging from 40-60 percent in core 
measurements and well-log calculations, common in 
these low-permeability sandstones.

Green River Formation

Oil and gas are produced from basal ostracodal 
limestones in the River Bend Unit (T. 10 S., R. 18 E., 
Uintah County) of the Greater Natural Buttes field. 
Production is limited to this area and is not expected 
to be significant at NOSR 2.

Wasatch Formation

The Wasatch, a designated tight reservoir, is pro 
ductive in a number of fields around NOSR 1-3 and 
NOSR 2. Major fields are the Greater Natural Buttes 
(Uinta Basin) and Grand Valley (Piceance basin). 
Thickness of individual sandstone reservoirs is <100 
ft and multiple reservoirs are the norm. The "G" sand, 
the primary target in the Grand Valley field, has an 
average net pay of 31 ft.

Wasatch reservoirs expected on the NOSRs will 
have multiple pay zones, each generally less than <75 
ft gross and net pay <30 ft. Porosity is expected to 
average 9-12 percent and permeability <0.1 md.

Examination of well-log and completion data in 
the Grand Valley and Rulison fields, adjacent to NOSR 
2, indicates that an empirical set of well-log cutoff 
values is used by operators to define commercial pay 
in sandstones of the Wasatch and Mesaverde inter 
vals. These values are "clean" sandstone gamma-

ray values ranging from <90 API, and in most wells 
<55-60 API, resistivity >30-40 ohm-m, and presence 
of gas effect, i.e., neutron-density log crossover.

Mesaverde Croup

Primary production in the Piceance basin is from 
the upper fluvial (Williams Fork Formation) and 
coastal intervals and middle paludal, Cameo coal, in 
terval. The lower marine interval (lies Formation, 
consisting of Rollins, Cozette, and Corcoran Sand 
stones (NOSR 1-3); the Castlegate Sandstone (NOSR 
2), despite the presence of gas effect on logs (neu 
tron-density crossover) may not be productive 
(Reinecke et al., 1991) and is a secondary target in 
many wells in the Piceance basin.

Thicknesses of individual reservoirs anticipated 
in the fluvial interval will be erratic and generally <100 
ft, net pay is highly variable and averages 260 ft in the 
Grand Valley field. Net pay in individual wells adja 
cent to NOSR 1-3 and NOSR 2 may exceed 500-600 
ft. Mesaverde reservoirs anticipated in the NOSR ar 
eas will be overpressured, have porosities of 7-14 per 
cent, and in-situ permeability <0.1 md. A 
well-developed Cameo coal interval capable of sig 
nificant coalbed methane production, is likely in the 
NOSR 3. Expected net coal (beds exceeding 4 ft) is 
50-70 ft.

Mancos "B"

Although this interval is productive in fields north 
west of NOSR 1-3 and east of NOSR 2, no production 
Mancos "B" (Emery Sandstone, part) is reported in 
fields adjacent to either, and this play is not expected 
to be significant in the NOSRs. Properties of produc 
tive reservoirs are 7-11 percent porosity, <0.1 md per 
meability and net pay averaging 30-250 ft (Noe, 
1993a).

Dakota Sandstone

The Dakota Sandstone-Cedar Mountain-Monison 
interval is productive in fields around NOSR 2. Net 
pay averages 20-30 ft, porosity 10-15 percent, and per 
meability of 0.1 md. Similar reservoirs can be antici 
pated in NOSR 2.

In the immediate vicinity of NOSR 1-3, only two 
wells penetrated the Dakota (Arco et al., 1 North Rifle 
Unit, T. 4 S., R. 93 W, sec. 31, top at 13,400 ft, and 
Barrett Arco 1-27 Deep Test No. 1, T. 6 S., R. 97 W, 
sec. 27, top at 17,100). The Barrett Arco 1-27 had gas 
shows (neutron-density crossover) in thin (<10 ft) 
sandstone members, however, testing indicated that 
the interval is non-productive. The depth to the Da 
kota Sandstone combined with disappointing results
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Figure 6. Albian to Middle Eocene chronostratigraphic diagram along cross section line illustrating nomenclature and 
temporal relations of major strata from the Sanpete Valley of central Utah to the Book Cliffs of eastern Utah via the 
southern part of the Uinta Basin, Utah (modified from Fouch and others, 1983, and Franczyk and others, 1989; Fouch and 
others, in press). Vertical line through strata indicates a change in stratigraphic nomenclature. Quote marks indicates an 
informal name applied locally to stratigraphic unit.

of production tests suggest that this will not be a 
significant play in NOSR 1-3.

Thermal History Of Organic Matter 

Rm Map at Base of the Mesaverde Group.

Figure 8 is an Rm map at the base of the Mesaverde 
Group in the Uinta Basin, Utah. The map shows a 
general trend of increasing maturity from south to 
north. This trend generally follows the structural con 
figuration on the base of the Mesaverde which indi 
cates that maturity was set prior to (at maximum burial) 
or during early stages of structural movement. In some 
areas, however, the R lines cut across structure indi-

ID

eating that maturity continued during or for some time 
after structural movement. It is likely that toward the 
deepest part of the basin, maturation at the base of 
the Mesaverde continued to increase during or after 
uplift and erosion that began 10 Ma (Miocene). On 
the flanks of the basin, however, maturity patterns may 
have been achieved prior to uplift.

FourRm lines and three zones of hydrocarbon gen 
eration are shown. The 0.65 percent Rm line is for 
reference, and shows the maturity of the base of the 
Mesaverde around the edge of the basin. The areas of 
the basin which have not achieved a maturity of 0.75 
percent, not mature enough for significant gas gen 
eration, are shown by the light stipple pattern. The

0.75 percent Rm line indicates the onset of significant 
gas generation from type HI kerogen at the base of the 
Mesaverde. The area between 0.75 percent and 1.10 
percent Rm (darker stipple) is where one would expect 
to begin encountering gas generation and accumula 
tion in Mesaverde reservoirs. The area north of 1.10 
percent Rm (darkest pattern) is the zone of maximum 
gas generation and expulsion. The upper limit of gas 
generation in the northern and deepest, undrilled part 
of the basin is unknown at this time. The 1.50 percent 
Rm line is for reference only.

The base of the Mesaverde is greater than 0.75 
percent Rm over a large area of the Uinta Basin. Ex 
cept, for the margins of the basin, where subsidence 
and burial depths were less, gas was probably being 
generated as Tertiary sediments were being deposited, 
in Paleocene or early Eocene time, and this genera 
tion continued until at least 10 Ma when uplift and 
erosion began in part of the basin accompanied by a 
regional cooling. In the deepest part of the basin, 
where the effect of uplift and erosion are not as great, 
if temperatures were still high enough, and kerogen 
was available (not "cooked out**), gas generation may 
have continued after 10 Ma and may be continuing 
today. It is likely that this gas was trapped in "tight 
reservoirs" throughout the generation history of the 
Mesaverde, and the pods of high fluid pressures (>0.5 
psi) found in the basin today may mark the areas of 
active generation.
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Figure 8. Vitrinite reflectance (RJ map showing thermal maturity on the base of the Mesaverde Group, Uinta Basin, Utah. 
The map indicates areas of no gas generation (light stipple pattern), onset of significant gas generation (0.75 percent RM line, 
and darker stipple pattern), and maximum gas generation and expulsion (1.10 percent Rm line and darkest pattern).

It is very important to note that the line'described 
by the surface projection of the vitrinite reflectance 
value (RJ > 1.10 at the base of the Mesaverde in the 
Uinta and Piceance basins indicates that the Tertiary 
and Cretaceous stratigraphic section below 3,000 ft± 
separates those fields with hydrocarbon contacts from 
those without. For strata and areas whose Ro< 1.10, 
the fields will have hydrocarbon/water contacts.

We have measured R values for strata over much
o

of the Uinta and Piceance Creek basins and through 
much of the buried stratigraphic section as a basis for 
prediction. In both basins a key component of assign 
ment of hydrocarbons was their position relative to

the line described by the surface projection of the 
vitrinite reflectance value (Ro) > 1.10 at the base of 
the Mesaverde.

Seismic Data Evaluation

There is little or no drilling in either the NOSR 1 
and 3 or NOSR 2 area that penetrates the entire sedi 
mentary section. Modern multichannel seismic reflec 
tion data is the only source of information that, in this 
case, can image all of the geologic section with the 
potential to generate and trap hydrocarbons. Much of 
the well information in and around the NOSR's pen 
etrates only the Wasatch and Mesaverde intervals,
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Figure FR1. Paleogeographic map 
showing early Late Cretaceous 
paleogeography in the Uinta and 
Piceance basins. Stratigraphic and 
lithologic components under Naval 
Oil Shale Reserves can be inferred 
from these data. Modified from 
Franczyk ct a/., 1992.
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Mid Cretaceous: Turanian

Figure FR2. Paleogeographic map 
showing mid Cretaceous Turanian 
paleogeography in the Uinta and 
Piceance basins. Stratigraphic and 
lithologic components under Naval 
Oil Shale Reserves can be inferred 
from these data. Modified from 
Franczyk ct a/., 1992.
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Figure FR3. Paleogeographic map 
showing Late Cretaceous late Santonian 
paleogeography in the Uinta and 
Piceance basins. Stratigraphic and 
Ihhologic components under Naval Oil 
Shale Reserves can be inferred from these 
data. Modified from Franczyk et a/., 
1992.

Cretaceous Late Early Campanian Blackhawk Time
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Figure FR4. Paleogeographic map 
showing Late Cretaceous early 
Campanian paleogeography in the Uinta 
and Piceance basins. Stratigraphic and 
Ihhologic components under Naval Oil 
Shale Reserves can be inferred from these 
data. Modified from Franczyk et a/., 
1992.
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Cretaceous early mid Campanian Castlegate Time

Figure FR5. Paleogeographic map 
showing Late Cretaceous mid Campanian 
paleogeography in the Uinta and 
Piceance basins. Stratigraphic and 
litho logic components under Naval Oil 
Shale Reserves can be inferred from these 
data. Modified from Franczyk et a/., 
1992.

Figure FR6. Paleogeographic map 
showing Late Cretaceous mid Campanian 
paleogeography in the Uinta and 
Piceance basins. Stratigraphic and 
lit ho logic components under Naval Oil 
Shale Reserves can be inferred from these 
data. Modified from Franczyk et a/., 
1992.
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Figure FR7. Paleogeographic map 
showing Late Cretaceous early (ate 
Campanian paleogeography in the Uinta 
and Piceance basins. Stratigraphic and 
(ithologic components under Naval Oil 
Shale Reserves can be inferred from these 
data. Modified from Franczyk ef a/., 
1992.

Figure FR8. Paleogeographic map 
showing Late Cretaceous late 
Campanian-early Maastrichtian Hunter 
Canyon Twentymile paleogeography in 
the Uinta and Piceance basins. 
Stratigraphic and (ithologic components 
under Naval Oil Shale Reserves can be 
inferred from these data. Modified from 
Franczyk efai, 1992.
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Cretaceous late Campanian-early MaastrichtLan North Horn-Williams Fork

Figure FR9. Paleogeographic map 
showing Late Cretaceous late 
Campanian-early Maastrichtian North 
Horn-Williams Fork paleogeography in 
the Uinta and Piceance basins. 
Stratigraphic and Hthologic components 
under Naval Oil Shale Reserves can be 
inferred from these data. Modified from 
Franczykefa/./ 1992.
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Figure FR10. Paleogeographic map 
showing mid Paleocene North Hom- 
Ft Union paleogeography in the Uinta 
and Piceance basins. Stratigraphic 
and Hthologic components under 
Naval Oil Shale Reserves can be 
inferred from these data. Modified 
from Franczyk et a/., 1992.
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Figure FR11. Paleogeographic map 
showing middle Eocene paleogeography 
in the Uinta and Piceance basins. 
Stratigraphic and lithologic components 
under Naval Oil Shale Reserves can be 
inferred from these data. Modified from 
Franczyk et a/., 1992.
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Figure FR12. Paleogeographic map 
showing late early to early middle 
Eocene paleogeography in the Uinta 
and Piceance basins. Stratigraphic and 
lithologic components under Naval Oil 
Shale Reserves can be inferred from 
these data. Modified from Franczyk et 
a/., 1992.
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therefore, seismic reflection data is the only tool avail 
able which can examine the structural characteristics 
under these shallow horizons and provide the infor 
mation needed to extrapolate structural trends into 
areas where there is no drilling data. This becomes 
increasingly more important when evaluating NOSR's 
1 and 3 and especially NOSR 2, since NOSR 2 has 
not been tested by the drill at all.

NOSR 1 and 3

Two very long seismic lines from Grant-Norpac 
Inc. provided the primary source of structural infor 
mation for this area. Two other shorter seismic lines 
from Seis-Port Exploration and Celsius Energy also 
provided much needed information along the north 
ern and southern margins of the project area respec 
tively. Figure T3 shows that Grant-Norpac line CPB-1 
runs diagonally across NOSR 1 and 3 beginning in 
the northwest comer and ending in the southeast, well 
across the Colorado River. Figure T3 also shows that 
Grant Norpac line CPB-3 begins in the northeast cor 
ner of the study area at Parker Ridge, proceeds across 
the NOSR 1 and 3 project area, and ends in the south 
west well past Parachute Creek. No exact location 
data was available for either the Seis-Port Explora 
tion line or the Celsius Energy line. Generally, the 
Seis-Port Exploration line runs almost due west-east, 
cutting across the most northern edge of NOSR 1. The 
Celsius Energy line looks to closely follow Interstate 
highway 70 and the Colorado River just to the south 
of NOSR 3.

Digital field data were available for both of the 
Grant-Norpac lines. No digital information was avail 
able for the Seis-Port Exploration or the Celsius En 
ergy lines. Original processing for the Grant-Norpac 
lines was determined to be excellent and produced 
seismic sections that were very interpretable through 
the entire sedimentary section from the surface to 
acoustic basement. The Seis-Port Exploration line, 
although interpretable, was not of the same quality as 
the Grant-Norpac lines. An oversized page copy and 
interpretation of the Celsius Energy line was acquired 
from a report by Waechter and Johnson, 1986. Utili 
zation of all of this data provided enough deep multi 
channel seismic reflection data to construct a general 
subsurface structural picture for the NOSR 1 and 3 
project area.

Interpretation of the Grant-Norpac and the Seis- 
Port Exploration lines was achieved by correlating 
subsurface information from several deep boreholes 
in the area with the seismic data. Two wells played an 
important part in the interpretation. The first well was 
the Arco North Rifle No. 1 which is located along 
Grant-Norpac line CPB-3 just off the northeast bound 
ary of NOSR 3 in the Government Creek area. The

Arco North Rifle No. 1 well bottomed in the Creta 
ceous Dakota Formation at a depth of approximately 
5,253.5 meters (17,170 ft) as measured from the wells 
kelly bushing. The other well which provided good 
subsurface information was the Barrett Resources No. 
1 -27 Arco Deep well located just to the south of Grant- 
Norpac line CPB-3 in the vicinity of Parachute Creek. 
This well bottomed in Precambrian granite at a total 
depth of about 4,734 meters (15,531 ft) as measured 
from the kelly bushing. Several other shallower wells 
were used to verify geologic tops interpreted on the 
Grant-Norpac data but these wells probed only the 
upper part of the section and did not penetrate much 
below the Mesaverde Corcoran sandstones. Data from 
many wells which penetrated the Wasatch and upper 
Mesaverde formations in the southern part of NOSR 
3 were available but their locations were to far away 
from the seismic lines to make reliable correlations. 
Among the more useful wells used were the Calco 
Sheaffer No. 1, Arco Exxon No. 1-36, DOE MWX 
wells, Northwest Exploration Clough No. 2, and the 
Barrett Resources No. A-2 Crystal Creek.

Synthetic seismograms were generated from the 
sonic, density, or resistivity logs for the wells men 
tioned above. These synthetic seismograms were then 
matched with the seismic data at the appropriate loca 
tions along the seismic lines and the key geologic tops 
determined in the wells were then correlated with their 
corresponding seismic reflectors. Figure Tl shows 
the synthetic seismogram constructed from the sonic 
and density logs for the Barrett Resources No. 1-27 
Arco Deep well. Geologic formation tops marked on 
the synthetic seismogram were provided courtesy of 
Barrett Resources. FigureT2 shows how the synthetic 
seismogram fits into the Grant-Norpac seismic data 
on line CPB-3. Good correlation was achieved with 
the seismic data at several levels by adjusting the fre 
quency content and wave shape of the wavelet con 
volved with the reflectivity series generated from the 
well log data. Interval velocity data produced from 
the acoustic logs for the Barrett Resources No. 1-27 
Arco Deep well contributed to the time-to-depth con 
versions of the Grant-Norpac lines. The interval ve 
locities calculated from the Barrett Resources No. 1-27 
Arco Deep well were:

Geologic Interval Interval Interval
Velocity Velocity
(m/s) (ft/s)

Surface - Wasatch
Wasatch - Mesaverde
Mesaverde - Cameo
Cameo - Mancos
Mancos - Dakota
Dakota - Permo-Penn
Permo-Penn - acoustic basement

3,300
3,515
4,503
4,595
4,170
5,070
4,973

10,825
11,535
14,775
15,075
13,680
16,635
16,315
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Figure T1. Synthetic seismogram produced using well log data from the Barrett Resources No. 1-27 Arco Deep well.
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Several important structural features were discov 
ered using the non-depth converted seismic data from 
Grant-Norpac. First was a suspected closed structural 
high at all levels from the surface through the Missis- 
sippian Leadville Formation in the NOSR 1 and 3 
project area. Figure T3 is a map showing the possible 
surface extent of the structural closure as mapped at 
the Cretaceous Dakota level. A second important fea 
ture determined from the seismic data and well tops 
from the Barrett Resources No. 1-27 Arco Deep well 
was a large normal fault with over 1,525 meters (5,000 
ft) of throw. This fault is interpreted as the Garmesa 
fault which is attributed to the ancestral Uncompahgre 
uplift Lastly, the structure produced by thrust fault 
ing associated with the Grand Hogback can be seen at 
the far northeastern end of Grant-Norpac line CPB-3. 
The Arco North Rifle No. 1 well may have penetrated 
the far western edge of this structure, just off the north 
eastern boundary of NOSR 3. Seismic reflectors from 
the surface through the Mancos zone turn sharply up 
ward in the NOSR 3 area along line CPB-3 in response 
to the effects of the Grand Hogback structure. Other 
than deep faulting in rocks of Mississippian age and 
older the most important structural feature for hydro 
carbon trapping as determined from the seismic data 
is the structural high as depicted in figure T3.

Since the project did have digital field data for 
the portion of Grant-Norpac line CPB-3 which crossed 
the NOSR 1 and 3 area reprocessing of the data was 
undertaken to confirm the structural anomaly and to 
try and obtain better results for a possible stratigraphic 
interpretation of the productive lower Mesaverde se 
quence. Figure T4 is a small scale copy of the repro 
cessed section with key geologic horizons labeled 
These horizons were determined from correlation with 
well information along the line as described above. 
Figures T5a and T5b are the same line displayed at a 
larger scale. Upon closer inspection the reader will 
notice that the structural closure is still present be 
neath the NOSR 1 area. Closure exists at all levels 
from the Mississippian Leadville Formation, on up 
through the section, and well into the Green River 
Formation above the Wasatch level. The reprocess 
ing confirms that structural closure still exists in seis 
mic time but is somewhat smaller in area and amount 
of closure then that evident from the original Grant- 
Norpac processing. Figure T6 is a portion of the re 
processed data which has been converted from 
two-way seismic travel time to depth. Figure T7 is a 
plot of the velocity model used in the conversion pro 
cess. The vertical scale in figure T6 represents depth 
below the seismic datum in thousands of feet. The 
seismic datum is at 2,529.9 meters (8,300 ft) above

sea level. The key geologic horizons as interpreted 
on figure T4 have been transferred and re-labeled on 
figure T6. Note that in figure T6 even after depth 
conversion the structural high is still present and in 
certain places exhibits over 30 meters (100 ft) of 
closure.

Much of the hydrocarbon production from the 
NOSR 3 area is from gas charges sands of Tertiary 
Wasatch and Mesaverde age. A possible stratigraphic 
interpretation for a portion of the reprocessed data from 
the lower Mesaverde section is presented in figure T8. 
This portion of the lower Mesaverde section repre 
sents layers which includes the Cameo coals and 
Rollins, Cozzette, and Corcoran sands. The upper fig 
ure, T8a, is a copy of the un-interpretaed reprocessed 
seismic data covering the interval from the top of the 
Cameo to the top of the Mancos layers. The lower 
portion, figure T8b, displays a possible interpretation 
of the data in this interval. Note the general complex 
character of the data in this interval. This- may be 
caused by the depositional environment active during 
lower Mesaverde time and may indicate that a fluvial 
system sands which thin and thicken laterally across 
the NOSR 1 and 3 area. Changes in reflection ampli 
tude most likely is caused by the inability of the seis 
mic wave to separately resolve or image the tops and 
bottoms of the individual lithologic units. In some 
cases where the layer thickness does seem to image 
the lithologic boundary's properly a change in reflec 
tion amplitude may indicate local porosity in the sand 
layers or lenses. In any case the interpretation of in 
dividual sand bodies in this interval is difficult

NOSR 2

Unlike NOSR 1 and 3 there was an abundance of 
seismic data available in the NOSR 2 project area. 
Originally there were nine seismic lines available 
which were actually located within the NOSR 2 bound 
ary. During the project an additional jour seismic lines 
were procured which were located just east of NOSR 
2 in an area where drilling had taken place. The new 
lines were used to correlate drill hole data with seis 
mic reflectors. These new lines intercepted the older 
data allowing us to extrapolate the well information 
into the NOSR 2 seismic data. The older data was 
shot by TRW and processed by Seismograph Service 
Corp. TRW line 1 runs from north to south along the 
eastern edge of NOSR 2. TRW lines 2 through 5 are 
located primarily in the southern part of NOSR 2. 
TRW line 6 run from west to east beginning along the 
middle of the western edge of NOSR 2 and proceeds 
southeast into NOSR 2. TRW lines 7 and 8 run pri 
marily from north to south starting roughly in the
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Figure T6. Depth converted reprocessed Grant-Norpac seismic line CPB-3 over the structural high.

middle of the northern edge of NOSR 2. TRW line 7 
reaches almost to the middle of the NOSR 2 area. 
Another older line, Union line 2, begins about a third 
of the way in from the middle western edge of NOSR 
2 and proceeds south before turning southeast and 
ending at the middle of the southern border of NOSR 
2. All of these lines seem to follow either drainage or 
surface roads. The four new lines, designated ADC, 
are located outside of the eastern border of NOSR 2 
in the Agency Draw area. The ADC lines were shot 
by CGG for Champlin Petroleum. ADC lines 1, 2, 
and 4 all tie with the TRW data set and in fact much of 
ADC line 1 follows the same track as TRW line 4. 
Figure Tinsert shows the location of'the ADC, TRW 
and Union seismic lines. No reproducible copies of 
Union line 2 were available so it has not been included 
as an illustration.

Digital field data for all of the TRW lines were 
available for re-processing. The digital data for Union 
line 2 along with several very old Continental Oil 
Company lines were not available. The paper copy of 
Union line 2 was used in the evaluation . but due to

the poor quality of the Continental lines and a lack of 
exact surface locations for these lines they were of 
little use in the study. Information from the Conti 
nental lines were only used as a reference to the type 
of structures that might be present within NOSR 2. 
Procurement of the ADC data included digital field 
information and these lines were processed to improve 
the final results and provide better correlation with 
the TRW data set Re-processing and re-display of 
the TRW data produced more interpretable seismic 
sections. Processed data in digital form allowed us to 
re-display the ADC data at the same vertical and hori 
zontal scales as the TRW data, thereby facilitating 
correlation of the ADC data with the TRW data.

Several key wells in the area in and around the 
ADC data set were used to correlate geologic hori 
zons with seismic reflectors. The most important well 
was the Celeron Agency Draw No. 16-3 which bot 
tomed in Mississippian age rocks at a total depth of 
about 4,694 meters (15,400 ft) as measured form the 
keily bushing. This is the deepest well in the area and 
it projects nicely into ADC line 4. Another well, the
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Figure T7. Velocity mode! used to convert from two-way travel time to depth the reprocessed portion of the Grant-No rpac 
seismic line CPB-3 presented in figure T6.

Texaco Skyline Government Agency Draw No. 1, is 
located just off the end of ADC line 2 and can also be 
projected into ADC line 5. This well penetrated to a 
total depth of about 3,737 meters (12,260 ft) as mea 
sured from the kelly bushing and bottomed in the Ju 
rassic Entrada Formation. Several other shallower 
wells provided good information for locating the 
Wasatch, Mesaverde, Sego/Castlegate, and Mancos 
horizons on the seismic data. These wells include the 
Del Rio Resources Agency Draw No. 23-1, Del Rio 
Resources Agency Draw No. 1-1 A, and the Sinclair 
Uintah Oil No. 1. Other wells were available but they 
are located at a significant distance from the seismic 
data and therefore projecting them into the seismic 
lines is risky.

Synthetic seismograms were generated from the 
borehole log data for the Celeron, Texaco, Del Rio 
Resources and Sinclair wells. These synthetic seis 
mograms were then inserted into the ADC seismic data 
at projected locations and key geologic horizon mark 
ers were then correlated with seismic reflectors. The 
interpreted seismic horizons were then loop tied to 
confirm there proper position before extrapolating their

information into the TRW and Union lines. After all 
of the data had been interpreted the horizons picked 
at all of the seismic line intersections were examined 
to make sure that all horizons tied properly. Figure 
T9 shows the correlation of the Celeron wells syn 
thetic seismogram with seismic data from ADC line 
4. Interval velocity data from the Celeron well was 
used to perform time-to-depth conversions for the key 
geologic horizons. These horizons included the tops 
of Wasatch, Mesaverde, Sego/Castlegate, Mancos, 
Dakota, Entrada, Mississippian, and acoustic base 
ment Interval velocities determined from the Celeron 
well were:

Geologic Interval

Surface - Green River
Green River - Wasatch
Wasatch - Mesaverde
Mesaverde - Sego/Castlegate
Sego/Castiegate - Mancos 
Mancos - Dakota
Entrada - Mississippian
Mississippian - acoustic basement

Interval 
Velocity 
(m/s)

3,640
3,735
4,213
4,398
4.347 
4,115
4.943
5,984

Interval 
Velocity 
(ft/s)

11,975
12,255
13,822
14,430
14,260 
13,500
16.217
19.635
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Figure T8a. Portion of the reprocessed Grant-Norpac seismic line CPB-3 showing the reflection character through the 
lower Mesaverde Fm. interval.
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Figure T8b. The same portion of data presented in figure T8a illustrating a possible interpretation for the lower Mesaverde 
interval.

The Celeron well was used in this determination 
because it penetrated most of the sedimentary section 
and produced the best match between the synthetic 
seismogram and the surface seismic data.

One important structure located in the southeast- 
em comer of NOSR 2 was evident on the seismic data. 
This apparent closed structural high is located in the 
Tabyago Springs area and is therefore known as 
Tabyago Dome. According to the seismic data this 
structure has an axis which runs approximately from 
northwest to southeast and is cut by many deep seated 
faults. Figure T10 is a portion of seismic line TRW-2 
showing the complex nature of the Tabyago Dome 
structure. No apparent closed structures are seen on

the seismic lines covering the western and northern 
edges of NOSR 2. Data is sparse or not present in the 
heart of NOSR 2 so locating structures similar to 
Tabyago Dome is difficult at best. A complete sub 
surface structural analysis of NOSR 2 would require 
additional seismic information in areas not presently 
covered by either the TRW or Union data.

HYDROCARBON PLAYS FOR ASSESSMENT

Hydrocarbon-bearing Phanerozoic strata have 
been identified in drill holes distributed overmuch of 
the eastern and north-central parts of Utah and north 
west Colorado. The hydrocarbon accumulations in
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Figure T9. Synthetic seismogram produced from the NOSR 2 Celeron Agency Draw No. 16-3 well log data. The synthetic 
seismogram has been inserted into a portion of reprocessed seismic line ADC-4 and shows the correlation between geologic

horizons and seismic reflectors in the NOSR 2 project area.
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Figure T10. Portion of reprocessed TRW seismic line 2 illustrating the structural complexity of the Tabyago Dome feature
in the NOSR 2 project area.
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TRW 3 Seismic Record. Section 
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TRW 6 Seismic Record Section 
Datum is 6,600 ft above Seal Level; Migrated Stack
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TRW 7 Seismic Record Section 
Datum 6,600 ft above Sea Level; Migrated Stack
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TRW 8 Seismic Record Section 
Datum 6,600 ft above Sea Level; Migrated Stack
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the region can be grouped into geologically-based 
plays, that is, hydrocarbon accumulations with common 
characteristics. The play has as its essence the notion 
that variance in stratal or rock properties, generally 
factors involving petroleum source, reservoir, and trap 
ping units, has served to isolate accumulations to re 
stricted areas. If conditions are favorable for discovery 
and exploitation, the accumulations may become 
fields. In other words, groups of fields and undiscov 
ered hypothesized accumulations with similar geologic 
and engineering (production) characteristics constitute 
a play. These common characteristics or factors es 
tablish a basis for understanding such that their pres 
ence can be predicted in undrilled and otherwise 
unexplored areas, and so that the amount of oil and 
gas resources in the undrilled areas can be estimated.

The discussion of the definition of plays and their 
stratigraphic, sedimentologic, and structural compo 
nents is dependent upon data presented above. The 
reader's attention is particularly called to the paleo- 
geographic maps and cross sections. Lithofacies and 
depositional facies illustrated in these figures were 
used by us to characterize the composition of strata in 
the hydrocarbon-bearing terranes and to serve as a 
basis for delineating play boundaries and their pro 
jections to the subsurface of sparsely or undrilled 
areas.

Hydrocarbons hypothesized to underlie Reserves 
1 and 3, Colorado were assigned to five major plays 
for nonassociated gas (Fig play maps). They are: 
Cretaceous Mesaverde Gas-Saturated 2007; 
Wasatch Formation Gas-Saturated 2008; The
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NOSR1 and 3 Plays

Cretaceous Mesaverde Gas-Saturated 2007 
(Play Figure). This play consists of mixed strati- 
graphic and structural accumulations of gas in sand 
stone reservoirs of the Upper Cretaceous Mesaverde 
Group. Reconstructions of the burial history of the 
strata and measures of vitrinite reflectance (Ro), in 
dicate that gas is currently being generated from 
source rocks within the Upper Cretaceous section.

We believe that the rapid and ongoing genera 
tion of gas has led to the strata's high fluid-pressure 
gradients, and that gradients more than 0.5 psi/ft can 
be expected in unexplored units. Porosity for units

below 10,000 ft is commonly less than 10% and may 
be as low as 6 to 8%. Many of these reservoirs will be 
characterized by values of matrix permeability below 
0.1 md in situ to gas.

The composition of source rocks in the Upper 
Cretaceous (Type III organic matter high oxygen to 
hydrogen ratio) units is such that most hydrocarbons 
generated from them are gas. In addition, the gas 
generating section appears to be continuously satu 
rated and relatively free of water/gas contacts. 
These relations suggest that the regional extent of the 
gas-saturated zone will be much larger than that es 
tablished by current drilling, and that it will underlie 
most of Reserves 3 and 1.
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Figure 2007. Map showing shaded area of the Cretaceous 
Mesaverde Gas Saturated play 2007 in northwest Colorado. 
The entire area of Naval Oil Shale Reserves 1 & 3 is within 
the play boundary.

Wasatch Formation Gas-Saturated Play 2008 
(Figure ). The Tertiary Wasatch play consists of 
structural and stratigraphic accumulations of gas 
trapped in Paleocene and Eocene sandstone reservoirs 
of the Wasatch Formation. Most of the gas in the play 
has migrated vertically from source Type HI (woody- 
herbaceous) rocks in the underlying Cretaceous section.

Gas/water contacts are rare to absent in the area 
of Reserve 3 and reservoirs yield gas, some condensate 
and a little water. Local values of porosity can ex 
ceed 18% though lower values are most common. 
For the most part, values of matrix porosity and 
permeability are comparable to those of reservoirs in 
some conventional fields.

The Mancos & Associated Rocks Play 2021P. 
This play includes gas in the Mancos B (Emery 
Sandstone part? equivalent), and in temporal equiva 
lents of the Frontier and Perron Sandstones and asso 
ciated units. These strata are very fined grained where 
developed in the Piceance basin and their presence 
as viable reservoirs under Reserves 1 and 3 is 
not certain (Fig. FR3).

Measures of rock properties in the Cretaceous sec 
tion in existing fields indicate that for equivalent 
depths, lithofacies, and levels of maturity, reservoir 
properties are greater in the Piceance basin than in the 
Uinta.

The Cretaceous Dakota Group, Cedar 
Mountain, Burro Canyon, and Jurassic Morrison 
Formation Play 2011P (Figure): This play involves 
fine to coarse grained fluvial, shallow marine, and 
eolian sandstones that underlie Reserves 3 and 1. Rock 
ages range from lower Upper Cretaceous to Lower 
Cretaceous and Jurassic. The plays lies at drilling

2008

i   j '̂

Figure 2008. Map showing shaded area of the Tertiary 
Wasatch Formation Gas Saturated play 2008 in northwest 
Colorado. The entire area of Naval Oil Shale Reserves 1 & 
3 is within the play boundary. Map also shows the Wasatch 
Formation Gas Saturated plays 2016 and 2015, and the 
Wasatch Formation Gas-Water Transitional play 2017 in 
northeast Utah. Naval Oil Shale Reserve 2 is underlain in 
part by the Utah Wasatch plays.

depths near and below 15,000 ft and porosity and 
permeability values are expected to be near and below 
10% and 0.1 md respectively. Because of the relatively 
high Ro vitrinite value of the base of the overlying 
Mesaverde section near Reserve 3, the stable 
hydrocarbon species will be gas. Herbaceous type III 
organic matter is present in the Dakota Group and may 
serve as a local source of thermal gas for the play (Fig. 
FR1).

Paleozoic strata play 2005 (Figure): The re 
gional Paleozoic play involves a regionally extensive 
complex of reservoir quality eolian and associated 
sandstone, and carbonate beds that is bounded on the 
west and north by nonreservoir marine rocks, and on 
the east and southeast by the nonreservoir redbed 
lithologies, or by uplifted Precambrian rocks. For pur 
poses of this study, structures associated with salt in 
the Paleozoic section are grouped with this play as 
are traps in Mississippian-age potential carbonate 
reservoir rocks.  

Over much of the region, reservoir rocks in Play 
2005U contain oil in the subsurface and are stained 
by it on surface exposures. Existing fields in the re 
gional play involve stratigraphic pinchouts and traps 
draped across structures in the Paleozoic rocks. The 
play includes Rangely field, the largest oil field in the 
Rocky Mountain region; stratigraphically and tem 
porally equivalent beds contain several billion barrels 
of oil in place at the Tar Sand Triangle in the northern 
part of the Paradox basin of eastern Utah.

The largest known accumulations in the play are 
of oil, but vitrinite reflectance values (much greater 
than R > 1.1) for most strata of this play in the area of
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Figure 2011 P. Map showing shaded area of the Cretaceous 
Dakota Group-Jurassic Morrison Formation Gas Saturated 
play 2021P in northeast Utah. The entire area of Naval Oil 
Shale Reserves 1 and 3 are within the play boundary.
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Paleozoic 5tr»t> Cis-2005

Figure 2005. Map showing shaded area of the Paleozoic 
clastic and carbonate play 2005. The entire area of Naval 
Oil Shale Reserves 2 is within the play boundary but 
important elements of the play are absent under Reserves 1 
and 3.

NOSRs 1 and 3, and the anticipated deep drilling 
depths required to reach the play under the NOSRs, 
suggest that the stable hydrocarbon species will be gas 
if present.

Inspection of the paleogeographic maps presented 
previously in this paper indicate that the optimum com 
ponents of the play do not underlie the area of NOSRs 
1 and 3 (Figs. J1-J3). For this reason we do not in 
clude the NOSRs in the primary area of the play. 
However, for completeness, we have evaluated the 
play extension using data from wells outside the area 
of the viable play (see Appendix C).

NOSR 2 Plays

Hydrocarbons that underlie Reserve 2, Utah were 
assigned to: Eastern Wasatch Gas-Saturated 2015; the 
western extension of the Wasatch Formation play 
2016; Wasatch Formation Transitional 2017; the 
Basin Flank Mesaverde Group 2018; , The Mesaverde 
Group Transitional 2019; Cretaceous Dakota Group 
& Jurassic Morrison Fm 2011U; and Paleozoic strata 
play2021U.

Eastern Wasatch Gas-Saturated Play 2015, 
Play 2016, and Play 2017 (see fig. 2007): This play 
includes Paieogene fluvial and lacustrine strata com 
monly assigned to the Wasatch or Colton Formations 
in the southeast part of the Uinta Basin, Utah.

Of particular note is the absence or gas/water con 
tacts from within the area of primary production at 
the Natural Buttes field. A key component of assign 
ment of hydrocarbons to plays was their position rela 
tive to the line described by the surface projection of 
the vitrinite reflectance value (Ro) > 1.10 at the base 
of the Mesaverde. The line serves to separate the

Wasatch Formation into domains in which a region 
where free water seems to coexists with zones of 
continuous gas saturation (Play 2017) from those be 
lieved to be characterized be continuos-gas saturation 
(Plays 2015 and 2016). The large Natural Buttes gas 
field serves as the core of play 2015 and it is devel 
oped above the area where gas is being generated in 
the underlying Mesaverde Group and rising directly 
to be trapped in reservoirs of the Wasatch Formation. 
As a result, source, reservoir rocks, and trap are in 
close proximity and drilling success is relatively high. 
Play 2016 is that region of continuous gas saturation 
where source and reservoir rocks are separated by an 
northwest thickening wedge of lower Tertiary strata 
and the resultant drilling success is not as high as that 
for play 2015.

Basin Flank Mesaverde Group Play 2018; The 
Mesaverde Group Transitional Play 2019 (Figure:) 
The plays consists of mixed stratigraphic and struc 
tural accumulations of gas in sandstone reservoirs of 
the Upper Cretaceous Mesaverde Group. Reconstruc 
tions of the burial history of the strata and measures 
of vitrinite reflectance (Ro), indicate that gas is cur 
rently being generated from source rocks within the 
Upper Cretaceous section. Of particular note is the 
absence or gas/water contacts from within the area of 
primary production from the Mesaverde at the Natu 
ral Buttes field. A key component of assignment of 
hydrocarbons to plays was their position relative to 
the line described by the surface projection of the 
vitrinite reflectance value (Ro) > 1.10 at the base of 
the Mesaverde. The line serves to separate the 
Mesaverde into domains in which a region where free 
water seems to coexists with zones of continuous gas
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NOSR 2 Play No. 2018: Cretaceous Mesaverde Gas Saturated

Play Area: Mesaverde Group reservoirs at drilling depths near and less 
thant 5.000ft. Mesaverde Group strata include the Rim Rock, Castiegate. 
and Sego Sandstones, and the Blackhawk, Tuscher. Farrer, Price River, 
and Neslen Formations. Contains gas-saturated strata.

 JO

Naval Oil Shale Reserve (NOSR) 2

Level of vitrinite reflectance (measure of thermal maturity) 
on basal Mesaverde

Figure 2018. Map showing shaded area of the Cretaceous Mesaverde Gas Saturated play 2018 in northeast Utah. The play 
includes the northwest part of Naval Oil Shale Reserve 2.

saturation (Play 2019) from those believed to be char 
acterized be continuous-gas saturation (Play 2018).

We believe that the rapid and ongoing generation 
of gas has led to the strata's high fluid-pressure gradi 
ents, and that gradients more than 0.5 psi/ft can be 
expected in unexplored units. Porosity for units be 
low 10,000 ft is commonly below 10% and may be as 
low as 6 to 8%. Many of these reservoirs will be char 
acterized by values of matrix permeability less than 
0.1 md in situ to gas.

The composition of source rocks in the Upper 
Cretaceous (Type III organic matter high oxygen to 
hydrogen ratio) units is such that most hydrocarbons 
generated from them are gas. In addition, the gas gen 
erating section appears to be continuously saturated

and relatively free of water/gas contacts (Play 2018). 
These relations suggest that the regional extent of the 
gas-saturated zone will be much larger than that es 
tablished by current drilling, and that it will underlie 
at least the northwest margin of Reserve 2.

The Mancos & Associated Rocks Play 2021U 
(Figure:) This play includes gas in the Mancos B 
(Emery Sandstone part? equivalent), Frontier and 
Perron Sandstones and associated units. These strata 
are very fined grained where exposed along the south- 
em margin of the Uinta Basin near Woodside, 
Westwater, and Wellington. However, seismic reflec 
tion data suggests that they may underlie Reserve 2. 
The expected hydrocarbon species in these reser 
voirs is gas because of the thermal state of rocks at
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NOSR 2 Play No. 2019: Cretaceous Mesaverde Gas-Water Transitional

Play Area: Mesaverde Group reservoirs at drilling depths near and less
thanl 5,000ft. Mesaverde Group strata indude the Rim Rock. Castiegate. 
and Sego Sandstones, and the Blackhawk, Tuscher, Farrer. Price River, 
and Neslen Formations. Contains mixed water- and gas-bearing strata.

Naval Oil Shale Reserve (NOSR) 2

Level of vitrinite reflectance (measure of thermal maturity) 
on basal Mesaverde

Figure 2019. Map showing shaded area of the Cretaceous Mesaverde Gas-Water Transitional play 2018 in northeast Utah. 
The play includes the southeast 2/3 rds of Naval Oil Shale Reserve 2.

comparable and shallower drilling depths in Natural 
Buttes wells. In addition, the Mancos Shale in this 
region contains abundant "type HI organic matter, a 
common source of gas.

Cretaceous Dakota Group & Jurassic Morrison 
Fm 2011U (Figure:) This plays involves fine to coarse 
grained fluvial, shallow, marine, and eolian sandstones 
that underlie Reserves 2 (see seismic record sections) 
and are exposed south of the Book Cliffs. The rocks 
range in age from lower Upper Cretaceous to Lower 
Cretaceous and Jurassic.

Inspection of borehole logs from fields in the play 
area indicate that porosity and permeability values 
are expected to be near and below 10% and 0.1 md 
respectively. However, local pods of higher porosity 
are apparently preserved such as at the Seep Ridge

gas field southeast of NOSR 2. Because of the rela 
tively high Ro Vitrinite value of the base of the over 
lying Mesaverde section near Reserve 2, the stable 
hydrocarbon species will be gas. Herbaceous type III 
organic matter is present in the Dakota Group and may 
serve as a local source of thermal gas for the play.

Paleozoic strata (see Fig. 2005:) Stratigraphic 
reconstructions by S.Y. Johnson et al. (1992) indicate 
that Reserve 2 is largely underlain by fluvial redbed 
lithologies and sparse carbonates (Figs. J1-J3). In 
addition, data derived from production tests in the 
region are scarce and where present, do not indicate 
that viable reservoirs have been detected. However, 
seismic record sections (see figures) indicate that some 
Paleozoic strata underlie the region of NOSR 2 at 
the northwest margin of the ancestral Uncompahgre
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Figure 2021 U. Map showing shaded area of the Cretaceous 
Mancos B-Emery sandstone Member of the Mancos Shale Gas 
Saturated play 2021. Play also includes Ferron and Frontier 
Sandstones and associated units. The entire area of Naval 
Oil Shale Reserves 1 & 3 is within the play boundary. Naval 
Oil Shale Reserve 2 is underlain by the play.

uplift. Elsewhere, the primary Paleozoic play in the 
region involves a regionally extensive complex of res 
ervoir quality eolian and associated sandstone, and car 
bonate beds that is bounded on the west and north by 
nonreservoir marine rocks, and on the east and south 
east by the nonreservoir redbed lithologies, or by the 
absence of the section over uplifted Precambrian rocks. 
It is important to note that the primary reservoir rock 
in that system, The Weber Sandstone, does not appear 
to be well developed, if at all, in the NOSR 2 area.

STATEMENT OF PROBLEM .

The hydrocarbon accumulations addressed in this 
section are defined as "continuous-type" gas or oil ac 
cumulations, not significantly affected by hydrody- 
namic influences, for which assessment methodologies 
based on sizes and numbers of fields are not appropri 
ate. We describe here the protocol that we used to 
assess potential additions to gas and oil reserves from 
continuous-type accumulations of the study areas.

Continuous-type accumulations are essentially 
single fields, so large in area! extent and so heteroge 
neous that their development cannot be properly 
modeled as field growth. Many assessment method 
ologies, such as that which will be used by the U.S. 
Geological Survey for conventional plays of their 1995 
National Assessment, are inappropriate for continu 
ous-type accumulations because such accumulations 
cannot be represented as groups of discrete, count 
able units (fields) delineated by down-dip hydrocar 
bon-water contacts.

Nature Of Continuous-Type Accumulations

Our definition of a continuous-type unconven 
tional hydrocarbon accumulation is based on the

observed setting and inferred dynamics of the accu 
mulation; the definition does not incorporate criteria 
that are commonly associated with other types of un 
conventional accumulations such as low API gravity, 
low matrix permeability (tight), or special regulatory 
status. For example, tight-gas production may or may 
not be from a continuous-type accumulation that requires 
the special resource-assessment methodology de 
scribed here.

The geologic setting typical of continuous-type 
accumulations is illustrated in Figure SI. Common 
geologic characteristics of a continuous-type accumu 
lation include occurrence downdip from water-satu 
rated rocks, lack of obvious trap and seal, crosscutting 
of lithologic boundaries, large area! extent, relatively 
low matrix permeability, abnormal pressure (high or 
low), and close association with source rocks. The 
boundary between a continuous-type accumulation 
and up-dip, water-saturated rocks (Fig. SI) may be 
transitional rather than abrupt.

Aspects of hydrocarbon production common to a 
continuous-type accumulation include large in-place 
hydrocarbon volume, low recovery factor, low water 
production, very few truly dry holes, and a heteroge 
neous "hit or miss" character for production rates and 
ultimate recoveries of wells. Unlike undiscovered ac 
cumulations in discrete structural and stratigraphic 
traps, the locations of continuous-type accumulations 
are often known.

Terminology

The assessment of continuous-type hydrocarbon 
accumulations is based on play analysis. In play analy 
sis, an assessment area is partitioned into geologic 
plays and the plays are analyzed individually.

Selected definitions of particular importance to the 
assessment of continuous-type accumulations arc pre 
sented here. These definitions should be viewed more 
as explanations than as inflexible technical rules.

Cell. A subdivision of a play with an area or size 
(acres, or mi2acres/640) equal to the typical spacing 
expected for wells of the play. Virtually all cells in a 
continuous-type accumulation are capable of produc 
ing some hydrocarbons. For purposes of this discus 
sion, a productive cell is one that contains at least one 
well for which production from the play is formally 

.reported. A play with no productive cells is a hypo 
thetical play. A nonproductive cell is one that con 
tains one or more wells that evaluated the play, none 
of which was productive in the play. An untested cell 
is one that has not been evaluated by a well. The 
number of untested cells in a play equals the total num 
ber of cells minus the number of cells (productive plus 
nonproductive) that have been evaluated.
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NOSR 2 Play No. 2011 U: Cretaceous Dakota Group & Assoc. Rks: Gas-saturated

Play Area: Includes Upper Cretaceous Dakota Group, Lower Cretaceous Cedar 
Mountain and Jurassic Morrison (Salt Wash Member) and 
Entrada Formations.

Naval Oil Shale Reserve (NOSR) 2

Figure 2011 U. Map showing area of the Cretaceous Dakota Group-Jurassic Morrison Formation Gas Saturated play 2011U 
in northeast Utah. The entire area of Naval Oil Shale Reserve 2 is within the play boundary.

Success ratio. The fraction (0-1.0) of untested 
cells in a play expected to be productive-. The combi 
nation of success ratio and number of untested cells 
yields the number of productive, untested cells in a 
play.

Estimated ultimate recovery (EUR) probabil 
ity distribution for productive, untested cells. A 
distribution that serves as a reference model for pro 
duction from the productive, untested cells of a play. 
The EUR data of the distribution (barrels of oil or 
millions of cubic feet of gas) should be representative 
of productive cells yet to be drilled, rather than estab 
lished production.

Play probability. The probability (0-1.0) that 
untested cells of a play are capable of producing at 
least one million barrels of oil or six billion cubic feet 
of non-associated gas. These minimum production 
thresholds are the same as those that will be used 
by the U.S. Geological Survey for conventional 
plays (discrete accumulations) of their 1995 National 
Assessment.

Procedure 

Overview

The procedure outlined by the flow diagram of 
Figure S2 is straightforward in concept A continu 
ous-type accumulation is subdivided into plays, and 
geologic risk (play probability) is assigned to each 
play. A play is regarded as a collection of hydro 
carbon-containing cells. The number of untested cells 
in a play and the fraction of untested cells expected to 
be productive (success ratio) are estimated. The com 
bination of success ratio and number of untested cells 
yields the number of productive, untested cells in a 
play. Existing production is used as a reference model 
for potential production from productive cells yet to 
be drilled.

Represent Continuous-Type Accumulations by Plays

For the case of a continuous-type accumulation, the 
first step of the assessment (Fig. S2) is to represent the
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Figure SI. Geologic setting of continuous-type gas or oil accumulations relative to discrete accumulations in structural or 
stratigraphic traps.

accumulation by a play or plays sufficiently homoge 
neous so that each play can be reasonably character 
ized by a single play probability, cell size, success ratio, 
and EUR probability distribution for productive, un 
tested cells. Play boundaries must be concisely drawn 
because the assessment depends strongly on the area 
of the play. Each play is identified as either a gas play 
or an oil play. A gas to oil ratio of 20,000 cubic feet 
of gas per barrel of oil separates gas plays from oil 
plays.

Assign Risk to Play

A play probability is estimated for each play. 
Lower play probability equates to a greater geologic 
risk that untested cells are not capable of producing 
the minimum threshold volume; a play probability of 
1.0 reflects geologic certainty that the minimum 
production threshold can be met The computational 
model (described in the following section) incorporates 
the play probability as a weighting factor in calculating 
unconditional play potential.

The possibility exists that a play is so speculative 
that an effort at quantitative assessment could not be 
defended. For such cases, we have adopted the con 
vention that a continuous-type play will not be assessed 
if the play probability is less than 0.11.

After assigning risk to a play, the assessment pro 
cess can be regarded as proceeding along two parallel 
flow paths. The right branch of Figure S2 addresses 
the number of productive, untested cells in a play, and 
the left branch addresses the production expected from 
those cells.

Estimate Number of Untested Cells in Play

For purposes of resource assessment, it is conve 
nient to envision the hydrocarbons of a continuous- 
type, accumulation as residing in cells. A play is then 
regarded as a collection of cells of area or size equal 
to the typical spacing expected for wells of the play 
(Fig. S3). The total number of cells in a play equals 
the area of the play (mi2) divided by the cell size (mi2).

A cell is characterized as either evaluated or un 
tested (Fig. S3). An evaluated cell is either produc 
tive or nonproductive. The number of untested cells 
in a play equals the total number of cells minus the 
productive and nonproductive cells.

Uncertainties in defining; play boundaries, num 
ber of evaluated cells, and cell sizes lead to measure 
ment error in the number of untested cells. This 
measurement error is expressed by estimating the mini 
mum possible number and maximum possible num 
ber of untested cells in the play. For cases where
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Represent continuous-type accumulation 
______by plays

for each play

Assign risk to play

Establish estimated ultimate
recovery probability distribution
for productive, untested cells

of play

Estimate number of 
untested cells in play

Estimate success
ratio for untested

cells of play

Number of productive, untested cells in 
play (from computational model)

Ancillary data for play

Computational model

Resource assessment: 
Base case

Figure S2. Flow diagram emphasizing geologically based portion of protocol (above wavy line) used to assess continuous- 
type gas and oil accumulations. The computational model is described in a separate section.

measurement error in the number of untested cells is 
significant, provision is made in the computational 
model to treat the number of untested cells as a prob 
ability distribution.

Estimate Success Ratio for Untested Cells of Play

One approach to estimating success ratio is to ex 
trapolate results of existing drilling in a play to the 
untested cells of the same play. Success ratio is then 
the number of productive cells divided by the number 
of cells evaluated (productive plus nonproductive).

If existing drilling results are not typical of the 
play as a whole, or the play is insufficiently drilled to 
establish a realistic success ratio, or the play has no 
productive cells (a hypothetical play), success ratio 
can be based upon drilling results from an analog play 
or upon concepts regarding geologic factors control 
ling production.

Success ratio is treated in the computational model 
as a single-valued parameter. As shown schematically 
in Figure S2 the combination of success ratio and num 
ber of untested cells yields the number of productive,

untested cells expected for a play. However, the com 
putational model provides no insight as to which un 
tested cells are expected to be productive.

Establish Estimated Ultimate Recovery (EUR) 
Probability Distribution for Productive, Untested 
Cells of PI ay

The.initial step in generating this EUR probabil 
ity distribution is to select a group of wells that form a 
sample set representative of the productive, untested 
cells of the play. Wells from an analog play can be 
used if necessary.

The next step is to calculate EUR values for these 
wells (see section on acquisition and analysis of 
production data). Because the EUR probability dis 
tribution provides a reference model for productive, 
untested cells of the play, production data that are 
thought to be atypical of the productive, untested cells 
are not used. The assumption that the EUR probabil 
ity distribution replicates future production from pro 
ductive, untested cells is unlikely to be valid if the 
EUR values display a pronounced time or spatial 
dependence.
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Figure S3. Sketch depicting a continuous-type play as a 
collection of cells of area equal to typical spacing expected 
for wells of the play. Circles represent cells that have been 
evaluated by wells; evaluated cells are either productive 
(solid circles) or nonproductive (open circles). Remaining 
cells are untested.

If a fully developed EUR probability distribution 
analogous to Figure S4 can be generated, seven 
fractiles (the 100th, 95th, 75th, 50th, 25th, 5th, and 
Oth probabilities) are supplied to the computational 
model. The 100th, 50th, and Oth fractiles represent 
the minimum, median, and maximum EUR's of the 
distribution, respectively. In cases of poorer data, 
where details of the EUR probability distribution are 
uncertain, three fractiles (the 100th, 50th, and Oth prob 
abilities) are supplied to the computational model and 
a log-normal probability distribution is assumed. In 
most cases, the minimum EUR is taken as zero, for 
which the probability is 100% that a productive cell's 
EUR will be higher.

At this point in the assessment procedure, the fun 
damental geologically based elements of the assess 
ment are established. The computational model 
calculates the base-case assessment (Fig. S2) by com 
bining the play probability, number of untested cells, 
success ratio, and EUR probability distribution.

Ancillary Data for Play

In order to assess co-products in a play (gas in an 
oil play or oil and condensate in a gas play) and to 
provide background data for a play, selected ancillary 
data are assembled. These data are: 1) the ratio of 
total gas to oil (cubic feet of gas per barrel of oil) for 
an oil play, or the ratio of oil and natural-gas liquids 
to total gas (barrels of liquid per million cubic feet of 
gas) for a gas play; 2) the minimum, maximum, and 
median depths (ft) of untested cells; 3) the fraction

(0-1.0) of untested cells expected to be evaluated by 
wells originally targeted for the play, for a deeper ho 
rizon, and for a shallower horizon; 4) the API gravity 
(degrees) of oil and condensate in the play; 5) the frac 
tion (0-1.0) of the play that carries a "tight" Federal 
Energy Regulatory Commission (FERC) designation; 
and 6) the fraction (0-1.0) of the play that may be off- 
limits to drilling in the foreseeable future for reasons 
such as wilderness or park designations, environmen 
tal restrictions, Native American concerns, physical 
inaccessibility, etc.

Operational Aspects

The information and attributes required for the 
assessment of continuous-type accumulations are sup 
plied by earth scientists who are experts regarding the 
area under consideration. These regional experts com 
plete a form for each play, which is the source of the 
input data required for the computational model and 
also provides selected ancillary information. Com 
pleted data forms are included in this report in Ap 
pendix A.

To bridge the gap between the data form and the 
expanded explanation of the assessment model pre 
sented here, and to promote procedural uniformity 
among plays, a succinct outline that provides guide 
lines for completing the data form is supplied to each 
regional expert.

In overview, experienced earth scientists supply 
the data required by the assessment model, and com 
puter routines programmed to implement the assess 
ment model execute the resource calculations. This 
arrangement combines the expertise of geologists, geo- 
physicists, and petroleum engineers with the 
computer's facility for manipulation of numbers.

Remarks

A comprehensive assessment of the nonassociated 
gas resources of the Naval Oil Shale Reserves must 
consider unconventional hydrocarbon accumulations. 
To this end, we identify a category of unconventional 
accumulation that we call a continuous-type 
accumulation, and describe a model for assessing 
potential reserve additions from this type of oil or gas 
accumulation.

Our assessment model relies on existing pro 
duction to characterize reserve additions expected 
from undrilled portions of continuous-type plays. 
The paradigm that in-place hydrocarbon volume is 
the foundation for unconventional-resource assess 
ment is not endorsed. A consequence of using 
production histories from existing wells is that we do
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Figure S4. Illustration using hypothetical data of estimated 
ultimate recovery (EUR) probability distribution for 
productive, untested cells of a continuous-type play. 
Horizontal axis is that of arithmetic probability paper.

not rely upon projections of secondary parameters such 
as porosity, permeability, water saturation, and net pay. 
The integrated effect of all these factors is reflected in 
a well's production data.

Our assessment model projects past and present 
production patterns into the future. Therefore, the 
"base-case" assessment (Fig. S2) implicitly incorpo 
rates a continuation of historical technologic and 
economic trends. Although beyond the scope of the 
present work, it would be possible to modify the base- 
case assessment to reflect perceptions of future eco 
nomic and technologic change.

PROBABILISTIC METHODOLOGY FOR 
ASSESSMENT OF PETROLEUM RESOURCES 
FROM CONTINUOUS-TYPE 
ACCUMULATIONS

A geostochastic system called UNCLE (uncon 
ventional energy) was developed for the assessment 
of oil and gas resources from continuous-type accu 
mulations. UNCLE is an efficient appraisal system 
for petroleum play analysis that uses a geologic 
probability model and an analytic probabilistic 
methodology.

In play analysis, geologic plays are defined 
within a petroleum assessment area, and the indi 
vidual plays are analyzed. The individual play es 
timates of oil and gas are aggregated, respectively, to 
estimate the petroleum potential of the entire assessment 
area. Therefore, UNCLE is comprised of two sepa 
rate probabilistic methodologies: one for play analy 
sis and another for play aggregation.

The geologic model for a play consisting of a con 
tinuous-type accumulation is basically a number-size 
model in which the number and sizes of volumes of 
oil and gas from a continuous-type accumulation are 
modeled (J. W. Schmoker, oral communication, 1994).

The probabilistic methodologies that were devel 
oped to solve the play analysis model and the play 
aggregation problem are analytic methodologies de 
rived from probability theory as opposed to Monte 
Carlo simulation. Resource estimates of undiscov 
ered, recoverable unconventional oil and gas resources 
are calculated and expressed in terms of probability 
distributions.

There are many steps necessary to be able to go 
from the geologic probability model to the resource 
estimates. The complete quantitative procedure re 
quires the following steps:

1. The geologic probability model defines 
an extremely complex probability 
problem.

2. The probability problem is essentially 
characterized by a data form.

3. The data form is solved by developing a 
probabilistic methodology.

4. The probabilistic methodology is based 
on analytic probability theory.

5. The analytic probability theory is used to 
derive numerous mathematical equations.

6. The mathematical equations are the basis 
for designing computer algorithms.

7. The computer algorithms are needed to 
write large, complicated computer pro 
grams.

8. The computer programs are run to per 
form the data processing.

9. The data processing results in the genera 
tion of the resource estimates.

10. The resource estimates are produced in 
the form of tables or graphs.

This report is an explanation of the probabilistic 
methodology developed by the author, a mathemati 
cal statistician, to go from the geologic probability 
model to the petroleum resource estimates. The com 
puter programs were written by Richard H. Balay, a 
computer scientist

Geologic Probability Model

A geologic model for the quantity of undiscov 
ered petroleum resources in a play involves uncer 
tainty because of the incomplete or fragmentary 
geologic information generally available. The geo 
logic probability model defines an extremely complex
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probability problem. The basic information required 
by the geologic probability model is put on a data form. 
The data form is filled out by the geologist who is 
assessing the play.

The geologic probability model consists of the 
following geologic and probabilistic descriptions and 
assumptions:

1. The play type is oil or gas.
2. The play probability is the probability that 

untested cells of a play are capable of pro 
ducing at least a specified minimum quan 
tity of resources, i.e., the play is favorable.

3. The number of untested cells in the play 
is a discrete random variable that is char 
acterized by three estimated values: me 
dian value, minimum value, and 
maximum value, which are also the 
fractiles FJO, F100, and F0, respectively, 
where, for example, F50 denotes the value 
where the probability of exceeding it is 
0.50. Four more fractiles F95, F75, F^, and 
F$ are calculated assuming a constructed 
probability distribution that is bell-shaped 
symmetric if F50 is equal to the midpoint 
of F100 and F0, positively skewed if F^ is 
to the left of the midpoint, and negatively 
skewed if F50 is to the right of the mid 
point.

4. The success ratio is the proportion of un 
tested cells expected to be productive.

5. The estimated ultimate recovery (EUR) 
well size represents the production from 
productive untested cells. The EUR is a 
continuous random variable that is char 
acterized by three estimated values: me 
dian value (F^), minimum value (F100), 
and maximum value (FJ] or by seven es
timated fractiles: F loo, , F75, F50 ,
F5, and F0. In the case of only three given 
fractiles, the four remaining fractiles are 
calculated assuming a log normal distri 
bution.

6. If an oil play, the expected ratio of total 
gas to oil (GOR) is estimated.

7. If a gas play, the expected ratio of oil and 
natural gas liquids to total gas is estimated.

8. The depth of the untested cells is a con 
tinuous random variable that is character 
ized by three estimated values: median 
value, minimum "value, and maximum 
value. The depth is not used in any of the 
calculations.

9. A subplay model is an option to estimate 
resources in a fraction of the play from 
estimates of the entire play.

10. An available economic model truncates 
distributions of the EUR using a minimum 
economic cut-off value.

Probability judgments concerning the play param 
eters and random variables are made by experts fa 
miliar with the geology of the area of interest. The 
experts review all available data relevant to the ap 
praisal, identify the major plays within the assessment 
area (e.g., basin or province), and then assess each 
identified play. All of the geologic data required by 
this model for a play are entered on an oil and gas 
appraisal data form. Information from the data form 
is entered into computer data files as the input for a 
computer program based upon an analytic method.

Probabilistic Methodology 

Play Analysis UNCLE

The analytic method was developed by the appli 
cation of many laws of expectation and variance in 
conditional probability theory. It systematically tracks 
through the geologic probability model, computes all 
of the means and variances of the appropriate random 
variables, and calculates all of the probabilities of oc 
currence. In arriving at probability fractiles, the log- 
normal distribution is used as a model for the play 
resource distribution (Crovelli, 1984). Oil, 
nonassociated gas, associated-dissolved gas, gas, and 
liquids in nonassociated gas are possible resources 
assessed depending upon whether the type of play is 
oil or gas. A simplified flowchart for the method is 
presented in Figure Cl.

The basic steps of the analytic method of play 
analysis (UNCLE) are:

1. Select the play.
2. Select the play type: oil or gas. For illustra 

tive purposes, suppose the play type is oil.
3. Compute the mean and variance of the esti 

mated ultimate recovery (EUR) well size of 
oil using the estimated seven fractiles and as 
suming a uniform distribution between 
fractiles, that is, a piecewise uniform prob 
ability density function (as is done in the case 
of a simulation method).

4. Compute the mean and variance of the num 
ber of untested cells from the estimated seven 
fractiles, assuming a uniform distribution 
between fractiles (as is also the case in a 
simulation method).
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5. Compute the mean and variance of the num 
ber of productive, untested cells by applying 
the success ratio of oil to the mean and vari 
ance of the number of untested cells.

6. Compute the mean and variance of the condi 
tional (A) play potential for oil the quantity 
of oil in the play, given the play is favorable. 
These values are determined from the prob 
ability theory of the expectation and variance 
of a random (number of productive, untested 
cells) of random variables (estimated ultimate 
recovery well sizes).

7. Compute the conditional play probability of 
oil the probability that a favorable play has 
at least one productive, untested cell. This 
probability is a function of the success ratio 
of oil and the number of untested cells distri 
bution.

8. Compute the mean and variance of the condi 
tional (B) play potential for oil the quantity 
of oil in the play, given the play is favorable 
and there is at least one productive, untested 
cell within the play. These values are deter 
mined by applying the conditional play prob 
ability of oil to the mean and variance of the 
conditional (A) play potential for oil.

9. Compute the unconditional play probability 
of oil the probability that the play has at least 
one productive, untested cell. This probabil 
ity is the product of the conditional play prob 
ability of oil and the play probability.

10. Compute the mean and variance of the un 
conditional play potential for oil the quan 
tity of oil in the play. These values are 
determined by applying the unconditional play 
probability of oil to the mean and variance of 
the conditional (B) play potential for oil.

11. Model the probability distribution of the con 
ditional (B) play potential for oil by using the 
lognormal distribution with mean and variance 
from step 8. Calculate various lognormal 
fractiles.

12. Compute various fractiles of the conditional 
(A) play potential for oil by a transformation 
to appropriate lognormal fractiles of the con 
ditional (B) play potential for oil using the 
conditional play probability of oil.

13. Compute various fractiles of the unconditional 
play potential for oil by a transformation to 
appropriate lognormal fractiles of the condi 
tional (B) play potential for oil using the un 
conditional play probability of oil.

14. Process associated-dissolved gas as a second 
resource to be assessed. Repeat steps 3 
through 13, substituting associated-dissolved 
gas for oil, with two basic modifications as 
follows. The estimated ultimate recovery 
(EUR) well size of oil is multiplied by the gas- 
oil ratio. The success ratio of associated-dis 
solved gas is the same as the success ratio of 
oil.

15. Suppose nonassociated gas is the resource to 
be assessed, i.e., the play type is gas. Repeat 
steps 3 through 13, substituting nonassociated 
gas for oil and using the estimated ultimate 
recovery (EUR) well size of nonassociated gas 
and the success ratio of nonassociated gas.

16. Process liquids in nonassociated gas as a sec 
ond resource to be assessed. Repeat steps 3 
through 13, substituting liquids in 
nonassociated gas for oil, with two basic modi 
fications as follows. The estimated ultimate 
recovery (EUR) well size of nonassociated gas 
is multiplied by the expected ratio of liquids 
to nonassociated gas. The success ratio of 
liquids in nonassociated gas is the same as the 
success ratio of nonassociated gas or zero if 
the liquids ratio is zero.

Play Aggregation UNCLE-AC

A separate probabilistic methodology was devel 
oped to estimate the aggregation of a set of plays. The 
resource estimates of the individual plays from play 
analysis using the UNCLE program are aggregated 
using an analytic probability method. Oil, nonassociated 
gas, associated-dissolved gas, gas, and liquids in 
nonassociated gas resources are each aggregated in 
turn. UNCLE-AG is also able to aggregate a set of 
plays under a dependency assumption. A simplified 
flowchart of play aggregation is presented in Figure 
C2.

The basic steps of the analytic method of play 
aggregation are:

1. Select plays to aggregate.
2. Process oil as the first resource to be aggregated.
3. Compute the mean, variance and fractiles of the 

unconditional aggregate potential for oil in the 
polar case of complete independence the quan 
tity of oil in the assessment area of the aggregated 
plays under independence.

(a) Determine the mean and variance by add 
ing all the individual play means and vari 
ances of the unconditional play potential 
for oil, respectively.
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Figure C1. Flowchart for analytic method of play analysis (UNCLE).

(b) Calculate the unconditional aggregate 
probability of oil the probability that the 
assessment area has at least one play with 
oil from the individual unconditional 
play probabilities of oil under the assump 
tion of independence.

(c) Compute the mean and variance of the 
conditional aggregate potential for oil  
the quantity of oil in the assessment area, 
given the assessment area has at least one 
play with oil. These are determined by 
applying the unconditional aggregate 
probability of oil to the mean and vari 
ance of the unconditional aggregate po 
tential for oil.

(d) Model the probability distribution of the 
conditional aggregate potential for oil by 
using the lognonnal distribution with 
mean and variance from (c).

(e) Compute various fractiles of the uncon 
ditional aggregate potential for oil by a 
transformation to appropriate lognonnal 
fractiles of the conditional aggregate

potential for oil using the unconditional 
aggregate probability for oil. 

4. Compute the mean, variance and fractiles of the 
unconditional aggregate potential for oil in the 
polar case of perfect positive correlation the 
quantity of oil in the assessment area of the ag 
gregated plays under perfect correlation.

(a) Determine the mean and standard devia 
tion by adding all the individual play 
means and standard deviations of the un 
conditional play potential for oil, respec 
tively.

(b) Calculate the unconditional aggregate 
probability of oil the probability that the 
assessment area has at least one play with 
oil from the individual unconditional 
play probabilities of oil under the assump 
tion of perfect positive correlation.

(c) Compute various fractiles of the uncon 
ditional aggregate potential for oil by 
adding all the individual play fractiles 
of the unconditional play potential for 
oil, respectively.
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5. Compute the mean, variance and fractiles of the 
unconditional aggregate potential for oil in the 
case of interpolation between the polar case of 
complete independence (d = 0) and the polar case 
of perfect positive correlation (d = 1) the quan 
tity of oil in the assessment area of the aggregated 
plays under a degree of dependency, d (0 < d < 
1). Interpolate the mean, standard deviation, 
fractiles, and unconditional aggregate probabil 
ity of oil between the two polar cases of steps 3 
and 4.

6. Compute the mean, variance and fractiles of the 
conditional aggregate potential for oil in the case 
of interpolation the quantity of oil in the 
assessment area, given the assessment area has at 
least one play with oil.

(a) Determine the mean and variance of the 
conditional aggregate potential for oil by 
applying the interpolated unconditional 
aggregate probability of oil to the inter 
polated mean and variance of the uncon 
ditional aggregate potential for oil.

(b) Model the probability distribution of the 
conditional aggregate potential for oil by 
using the lognormal distribution with 
mean and variance from (a). Calculate 
various lognormal fractiles.

7. Process nonassociated gas as the second resource 
to be aggregated. Repeat steps 3 through 6 using 
play-analysis estimates of nonassociated gas  
namely, the individual play means, variances and 
fractiles of the unconditional play potential for 
nonassociated gas, as well as the individual un 
conditional play probabilities of nonassociated 
gas.

8. Process associated-dissolved gas as the third re 
source to be aggregated. Repeat steps 3 through 
6 using play-analysis estimates of associated-dis 
solved gas namely, the individual play means, 
variances and fractiles of the unconditional play 
potential for associated-dissolved gas, as well as 
the individual unconditional play probabilities of 
associated-dissolved gas.

9. Process gas as the fourth resource to be aggre 
gated. Repeat steps 3 through 6 using play- 
analysis estimates of gas namely, the individual 
play means, variances and fractiles of the uncon 
ditional play potential for gas, as well as the indi 
vidual unconditional play probabilities of gas.

10. Process liquids in nonassociated gas as the fifth 
resource to be aggregated. Repeat steps 3 through 
6 using play-analysis estimates of liquids in 
nonassociated gas namely, the individual play

means, variances and fractiles of the unconditional 
play potential for liquids in nonassociated gas, as 
well as the individual unconditional play probabili 
ties of liquids in nonassociated gas.

Relation Between UNCLE and UNCLE-AG

UNCLE-AG is related to UNCLE as follows. 
UNCLE not only generates a file of resource estimates 
for an individual play but also outputs a second file 
of results that consists of the unconditional play 
probability, cutoff, mean, standard deviation and 
fractiles of the unconditional play potential for each 
of the seven resources. The second file is needed for 
an aggregation of plays and forms an input file for 
UNCLE-AG. Therefore, after UNCLE is run on each 
play in a set of plays, any subset of plays can be ag 
gregated by running UNCLE-AG On the correspond 
ing subset of aggregation input files. UNCLE-AG not 
only generates a file of resource estimates for an ag 
gregation of plays but also outputs a second file of 
results needed for an aggregation of aggregations, 
which forms yet another input file for UNCLE-AG. 
Hence, after UNCLE-AG is run on each aggregation 
in a set of aggregations, any subset of aggregations 
can be aggregated at once. Compared to the simula 
tion method, the application of UNCLE-AG can re 
sult in tremendous savings of time and cost, especially 
when analyzing many aggregations involving hun 
dreds of plays.

ACQUISITION AND ANALYSIS OF 
PRODUCTION DATA

Data for the calculation of estimated ultimate re 
covery (EUR) for wells within a specified play are 
obtained from the Petroleum Information Corporation 
data base. Due to the absence of reservoir pressure 
data and reservoir fluid pressure-volume-temperature 
(PVT) analyses, plots of pressure versus cumulative 
gas produced (PNZ plots) for gas reservoir EUR de 
termination cannot be generated. Therefore, an esti 
mate of the ultimate recovery relies upon the 
production history and a decline curve analysis (DCA).

The wells selected to generate the EUR distribu 
tion must represent the range of productivities within 
the area. Production histories of insufficient duration 
(less than 30 months) or inconsistent behavior are ex 
cluded from the analysis due to the increased uncer 
tainty imposed by the DCA approach. Inactive wells 
are included because these types of wells will be en 
countered in the drilling of the untested cells. A his 
tory of downtime was generally not included in 
forecasting the future productivity of the well.
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SELECT PLAYS 
TO AGGREGATE

PROCESS HCTYPE

MEANS, VARIANCES & FRACTILES
OF UNCOND. PLAY POTENTIAL

FOR INDIVIDUAL PLAYS

MEAN, VARIANCE & FRACTILES
OF UNCOND. AGGREGATE POTENTIAL

IN POLAR CASE OF COMPLETE
INDEPENDENCE (d = 0)

MEAN, VARIANCE & FRACTILES
OF UNCOND. AGGREGATE POTENTIAL

IN POLAR CASE OF PERFECT
CORRELATION (d = 1)

" MEAN, VARIANCE & FRACTILES 
OF UNCOND. AGGREGATE POTENTIAL 

IN CASE OF INTERPOLATION

MEAN, VARIANCE & FRACTILES
OF COND. AGGREGATE POTENTIAL

IN CASE OF INTERPOLATION

1 OIL, NONASSOCIATED GAS, ASSOCIATED-DISSOLVED GAS, GAS, AND LIQUIDS 
IN NONASSOCIATED GAS RESOURCES ARE EACH AGGREGATED IN TURN.

Figure C2. Flowchart for analytic method of play aggregation (UNCLE-AG).

This use of DCA assumes, in part, that there are 
no backpressure effects, gas flow into the wellbore is 
radial, the wells are producing in a stage of depletion 
and that the cumulative effects that have altered pro 
duction in the past will continue to do so in the fu 
ture. Segmented exponential declines are used to 
represent historical and forecasted production. A 
maximum producing life of 35 years or an economic 
limit of 10 MCFD is imposed. If the production rate 
is high at the end of the 35 year limit, a constant 
decline rate during the last five years of production 
forces productivity to the economic limit of 10 MCFD. 
Figure B1 is an illustration of the use of DCA for a 
Wasatch producer located in T10 S and R 19 E of the 
Uinta Basin, Utah.

The calculated EUR's for the specified play are 
arranged in descending order and are plotted on semi- 
log probability paper (Fig. B2). This represents the 
EUR distribution of the untested cells of the play.

CLOSING COMMENTS

It is important to remember that many of the steps 
involved in this study required the assignment of strata 
to plays and that assumptions be made in the assess 
ment of these plays. These assignments and assump 
tions could be varied from that used herein. For 
example our definition of a play requires that the ge 
ologist group hydrocarbon accumulations in the re 
gion into geologically-based plays, that is, 
hydrocarbon accumulations with common character 
istics. This grouping requires that we draw bound 
aries between plays and project those boundaries to 
unexplored areas using some combination of geologic 
parameters that can be associated with production in 
the plays and that can be measured in unexplored 
areas. For this study we have chosen to draw 
boundaries and measure production indices using con 
servation limits. However these conservative limits 
may serve to lower the relative resources in a play.
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In this report we have used a vitrinite reflectance 
value (Ro) of 1.1% as a threshold measure to draw a 
line between plays characterized among gas-saturated 
and transitional plays. For purposes of illustration and 
calculation, these boundaries are regarded as sharp 
lines even though we know that the boundaries between 
plays, and therefore calculated production indices, are 
probably gradational throughout the area of the play. 
Indices used to approximate play characteristics (i.e. 
cell success ration, EUR distribution) are probably 
commonly gradational from play to play. For example, 
one could select a value between R 0.75% and 1.10%

o

to distinguish among gas-saturated and transitional 
plays. In this study use of a lower threshold value of 
Ro to separate plays would have the effect of increas 
ing the area of potential higher resources because it 
would serve to increase the area characterized by gas- 
saturated rocks. However, the use of a lower value of 
Ro would probably also serve to lower the cell suc 
cess ration and EUR distribution for the play because 
it would result in the inclusion of an increased num 
ber of wells that produce water and that have lower 
values of ultimate recovery.

We have used past performance (i.e., cell success 
ratio, EUR distribution) as our primary indicator of 
the capacity of the strata to yield gas in the future. 
The EUR distribution for a play is correct for that spac 
ing determined to be correct for the accumulation, i.e., 
wells recover all gas but do not drain gas in commu 
nication with another. However, in this analysis we 
found that spacing for play varied from area to area 
and only through a history of extensive drilling and 
production has an appropriate spacing been defined. 
Our EUR analysis for plays made use of data from 
wells that were drilled over a number of years and to 
fill a variety of spacing requirements. Due to the limi 
tations of the study we did not attempt to determine 
separate EUR distributions for each spacing although 
to do so would have provided a refined basis for as 
sessment.

For the most part, plays (or segments thereof) ana 
lyzed as a part of this study have a history of produc 
tion dating back as much as 25 years. The record of 
production from these plays includes not only gas pro 
duced from zones completed during early periods of 
the fields (wells) development but also a continued 
addition of gas from zones or pays that were not ini 
tially discovered or connected to the wellbore and were 
behind-the-pipe during the formative years of produc 
tion. Behind-the-pipe reserves are those determined 
by operators to represent discovered reserves that could 
be produced economically when and if they are con 
nected to the well bore. Their recognition is based 
upon geophysical and petrophysical measures of

secondary parameters believed by the operator to be 
indicators of gas that could be produced economically. 
Normal development of a play results in the produc 
tion from both initial reserves and the addition of "be 
hind the pipe" reserves from subsequently completed 
zones, and the EUR distribution for the play reflects 
this growth.

The U.S. Department of Energy has determined 
that the record of existing production from the 
Mesaverde Group in the area of Naval Oil Shale Re 
serves 1 and 3 does not reflect a history of addition of 
behind-the-pipe reserves because of the short history 
of production from this play (2007). Therefore, in 
this study we use a EUR distribution and cell success 
ratio for the Mesaverde Play 2007 that was determined 
by FD Services for the Department of Energy (see 
Appendix A). Their distribution consists of an EUR 
distribution determined by adding Mesaverde (includ- 
 ing the Cameo Coal) behind-the-pipe reserves to the 
EUR determined solely from existing production 
records for the play. This addition of behind-the-pipe 
reserves has the effect of increasing the production 
values along the entire EUR distribution.
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APPENDIX A

PLAY MAPS, EUR DISTRIBUTIONS AND DATASHEETS, AND INPUT DATA FOR ANALYSIS. 
PLAY MAPS ARE APPROXIMATE. SEE PLATES FOR CORRECT PLAY OUTLINES IN AREA OF 
NAVAL OIL SHALE RESERVES.
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NOSR 2 Play 2011U
ttt-oo- MOMS- itorw twts- t«roa ioe«xs- tww twtr too-oo-

NOSR 2 Play No. 2011 U: Cretaceous Dakota Group & Assoc. Rks: Gas-saturated

Play Area: Includes Upper Cretaceous Dakota Group. Lower Cretaceous Cedar 
Mountain and Jurassic Morrison (Salt Wash Member) and 
Entrada Formations.

Naval Oil Shale Reserve (NOSR) 2

USGS-DOE NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch

Date: 3/28/94

.Province Name, No.: Uinta

_Play Name, No.: Cretaceous Dokota & Jurassic Ss Gas Staurated: 2011U
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -__Oil or _X_Gas (I C) _X_Confirmed or ...Hypothetical (IV A) _______

Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 Ql B)

Cells (III) Ceil Size (IE AD: 160 (80-640) acres: ____ mi^ (acres/640) 
Area of NOSR 2 (IE A2): 141 mi2 Total no. of cells (III A3): 
No. of productive cells (III B): 0 No. of nonproductive cells (III C): 0 
No. of untested cells in NOSR (III D): 564 50th fractile
Minimum possible number of untested cells (III El): 141 100th fractile 
Maximum possible number of untested cells (III E2): 1128 Oth fractile

053)
Success ratio (0-1.0) (IV): .35
EUR probability distribution (V*):

Minimum Median
Fractile: 100th (95th) (75th) 50th (25th) (5th)
EUR (BO or
MMCF) __Q_ ( 1.6 ) ( 40 ) 290 ( 980 ) (_2j

Max' 

Oth

6000
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NOSR2
Play Number & Name:

Source for Well Data: 

Comments:

Screen Data:

Play 20ULU - Dakota, Morrison & Assoc.

Petroleum Information : cumulative production to July of 1993

Pressure data is unavailable.
Plot of EUR vs. Initial Production Date does not support a learning
curve.
EUR calculations reflect current spacing.

Dakota, Morrison, Cedar Mm., Salt Wash or Entrada
Formations
Wells located within the designated play area
Initial production date < 1992
Active or inactive status

Total number of wells that meet screening criteria: 39 

Total number of wells used in the EUR Distribution: 32

Calculation of EUR:

EUR Probability Distribution:

Fractile
0
5

25 
50 
75 
95 
100

Decline Curve Analysis (DCA)
Assumptions:
No back pressure effects, radial flow, producing in the depletion
stage, cumulative effects of factors altering production in the
history of the well = cumulative effects in the future, etc.
Segmented exponential declines are used.
Life of a well is assumed to be 35 years maximum or will produce
until an economic limit of 10 MCFD is reached. If necessary, a
constant decline rate is imposed during the last five years to force
the production rate to the economic limit of 10 MCFD in year 35.
Inactive wells remain idle.
Downtime is assumed negligible in the future.

EUR OvlMCF) 
6000 
2700 
980 
290 
40 
1.6 
0
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NOSR 1 &3 Play 2011P

,f

-b
L________II"     1

Play 201 IP: Dakota & Morrison

USGS-DOE NOSR 1 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch

Date: 3/26/94

.Province Name, No.: Piceance

_Play Name, No.: Dakota Grp & Jurassic Ti?bt Gas. 2011P
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Qil or X Gas a O _X_Confirmed or __Hypothetical (IV A)

Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 (II B)

Cells (III) mi2 (acres/640)Cell Size (III AD: 160(640-80) acres:
Area of NOSR 1 37.500 acres (III A2): Total no. of cells (III A3): 234
No. of productive cells in NOSR (HI B): 0 No. of nonproductive cells in NOSR (IE C): _Q
No. of untested cells (III D): 234 50th fractile
Minimum possible number of untested cells (III El): 59 100th fractile
Maximum possible number of untested cells (III E2): 472 Oth fractilea. -  * *       - '  

Success ratio for entire play(0-1.0) (IV): 0.7 

EUR probability distribution (V*):
Minimum
Fractile: 100th
EUR (BO or
MMCF) 0

(95th)

(_2J

Median
(75th) 50th

(30) 60

-
(25th)

GfiS)

(5th)

U2QQJ

Max
Oth

2000
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NOSR 1 & 3
Play Number & Name:

Source for Well Data: 

Comments:

Screen Data:

Play 2011P, Dakota & Assoc.

Petroleum Information : cumulative production to July of 1993

Pressure data is unavailable.
Plot of EUR vs. Initial Production Date does not support a learning
curve.
EUR calculations reflect current spacing.

Piceance Basin
Dakota or Entrada Formations
Fields - Calf Canyon, Mesagar, Hunters Canyon, Cameo, Bronco
Flats
Initial production date < 1990
Active or inactive status

Total number of wells that meet screening criteria: 18 

Total number of wells used in the EUR Distribution: 17

Calculation of EUR:

EUR Probability Distribution:
Fractile
0
5

25 
50 
75 
95 
100

Decline Curve Analysis (DCA)
Assumptions:
No back pressure effects, radial flow, producing in the depletion
stage, cumulative effects of factors altering production in the
history of the well = cumulative effects in the future, etc.
Segmented exponential declines are used.
Life of a well is assumed to be 35 years maximum or will produce
until an economic limit of 10 MCFD is reached. If necessary, a
constant decline rate is imposed during the last five years toforce
the production rate to the economic limit of 10 MCFD in year 35.
Inactive wells remain idle.
Downtime is assumed negligible in the future.

EUR (MMCF) 
2000 
1200 
265 
60 
30 
2 
0
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Percent of Cells in Play 201 IP with Higher 
Estimated Ultimate Recovery (EUR)
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NOSR2Play2021U

|___ ____ _ <_s

Mancos-Ferron-Frontier 2021U

USGS-DOE NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch

Date: 3/28/94

.Province Name, No.: Uinta

_Play Name, No.: Maocos & Assoc Gas Saturated 2Q21U
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Oil or _XJ3as (I C) _X_Confirmed or ...Hypothetical (IV A)

Play Probability (0-1.0) (II A): Stop here if play does not exceed 0.10 (II B)

Cells Gil) Cell Size (III AD: 160(640-40^ acres: ___ mi2 (acres/640)
Area of NOSR 2 (III A2): 141 mi2 Total no. of cells (III A3): _
No. of productive cells (III B): 0 No. of nonproductive cells (III C): 0
No. of untested cells (IH D): 565 50th fractile
Minimum possible number of untested cells (III El): 141 100th fractile
Maximum possible number of untested cells (HI E2): 2256 Oth fractile

Success ratio in entire play (0-1.0) (IV): .14
EUR probability distribution (V*):
Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) __0_ (__U ( 3 ) 7 ( 19 ) ( 48 ) 100
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NOSR2

Play Number & Name: 

Source for Well Data: 

Comments:

Screen Data:

Play 2021U - Mancos & Assoc. 

Petroleum Information : cumulative production to July of 1993

Pressure data is unavailable. Plot of EUR vs. Initial Production 
Date does not support a learning curve. EUR calculations reflect 
current spacing.

Mancos Formation
Wells located within the designated play area
Initial production date < 1990
Active or inactive status

Total number of wells that meet screening criteria: 7 

Total number of wells used in the EUR Distribution: 7

Calculation of EUR:

EUR Probability Distribution:

Fractile

0
5

25
50
75
95
100

Decline Curve Analysis (DCA) 
Assumptions:
No back pressure effects, radial flow, producing in the depletion 
stage, cumulative effects of factors altering production in the 
history of the well = cumulative effects in the future, etc. 
Segmented exponential declines are used. 
Life of a well is assumed to be 35 years maximum or will pro 
duce until an economic limit of 10 MCFD is reached. If neces 
sary, a constant decline rate is imposed during the last five years 
to force the production rate to the economic limit of 10 MCFD in 
year 35.
Inactive wells remain idle. 
Downtime is assumed negligible in the future.

EUR (MMCF)

100
48
19
7
3
1
0
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NOSR / & 3 Play 2021P 

No Map Available

USGS-DOE NOSR 1 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch_______Province Name, No.: Piceance

Date: 3/26/94 Plav Name, No.: Mancos + Gas-Saturated. 2021P
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Qil____or _jC_Gas (I Q X Confirmed or _Hypothetical (TV A)_________________

Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 (U B)

Cells (III) Cell Size (in AH: 160(640-80) acres: ____ mi2 (acres/640)
Area of NOSR 1 37,500 acres (III A2): Total no. of cells (IE A3): 234
No. of productive cells in NOSR(III B): 0 No. of nonproductive cells in NOSR (III C): _Q
No. of untested cells (III D): 234 50th fractile
Minimum possible number of untested cells (III El): 59 100th fractile
Maximum possible number of untested cells (III E2): 472 Oth fractile

Success ratio from play (0-1.0) (IV): .07
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) 0 ( 2.6 } (27) 140 (290) ( 600 ) 800

NOSR 1 & 3
Play Number & Name: Play 2021P, Mancos & Assoc. Rocks

Source for Well Data: Petroleum Information: cumulative production to July of 1993

Comments: Pressure data is unavailable.
Plot of EUR vs. Initial Production Date does not support a learning curve. 
EUR calculations reflect current spacing.

Screen Data: Piceance Basin
Mancos Formations
Wells located in the designated play area 
Initial production date < 1990 
Active or inactive status

Total number of wells that meet screening criteria: 7 

Total number of wells used in the EUR Distribution: 7

Calculation of EUR: Decline Curve Analysis (DCA)
Assumptions:
No back pressure effects, radial flow, producing in the depletion stage, 
cumulative effects of factors altering production in the history of the 
well = cumulative effects in the future, etc. 
Segmented exponential declines are used.
Life of a well is assumed to be 35 years maximum or will produce 
until an economic limit of 10 MCFD is reached. If necessary, a constant 
decline rate is imposed during the last five years to force the production 
rate to the economic limit of 10 MCFD in year 35. 
Inactive wells remain idle. 
Downtime is assumed negligible in the future.
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EUR Probability Distribution:
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NOSR 1 &3, NOSR 2 Play 2005

Paleozoic Strata Gas- 2005

111-00- iio-*s- iio-scr no-is- iio-o<y io9-«r

NOSR 2 Play No. 2005: Paleozoic Sillciclastlc & carbonate Rocks : Gas-saturated

Play Area: Includes Pennsylvanian & Permian sandstones such as the
White Rim. Coconino. Weber and associated units and carbonate 
strata including the Permian Kaibab & Mississipian 
Redwall Limestone (Madison. Leadville).

Area most like anticipated traps, etc, at NOSR 2: Wells from this area are 
emphasized. Wells south of Book Cliffs may contain water contacts and 
some structures may involve salt tectonics. Carbonate portion of play may 
contain water contacts.

Naval Oil Shale Reserve (NOSR) 2
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USGS-DOE NOSR 1 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch_______Province Name, No.: Piceance

Date: 3/26/94 Play Name, No.: Paleozoic Gas. 2005P
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_QiI____or_X_Gas(IC) _J(_Confirmed or _Hypothetical (IV A)_________________

Play Probability (0-1.0) (H A): 1 Stop here if play does not exceed 0.10 (H B)

Cells (III) Cell Size (HI Al): 160(640-80) acres: ____ mi2 (acres/640)
Area of NOSR 1 37,500 acres (III A2): Total no. of cells (HI A3): 234
No. of productive cells in NOSR (HI B): 0 No. of nonproductive cells in NOSR (IE C):
No. of untested cells (IE D): 234 50th fractile
Minimum possible number of untested cells (III El): 59 100th fractile
Maximum possible number of untested cells (III E2): 472 Oth fractile

Success ratio for entire play(0-1.0) (IV): 0.01
Used Mancos EUR Distribution because of anticipated extreme impermeable nature of reservoirs
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) 0 ( 2.6 } (27) 140 (290) ( 600 ) 800

USGS-DOE NOSR 3 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch_______Province Name, No.: Piceance

Date: 3/26/94 Plav Name, No.: Paleozoic Gas. 2005P
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Oil____orJKJjas(IC) _JC_Confirmed or __Hypothetical (IV A)_______________

Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 (II B)

Cells (IH) Cell Size (HI Al): 160 r640-80) acres: ____ mi2 (acres/640)
Area of NOSR 3 18,040 acres (III A2): Total no. of cells (HI A3): 113
No. of productive cells (HI B): 0 No. of nonproductive cells (III C): 0
No. of untested cells (HI D): 113 50th fractile
Minimum possible number of untested cells (HI El): 28 100th fractile
Maximum possible number of untested cells (III E2): 226 Oth fractile

Success ratio for entire play(0-1.0) (IV): 0.01

Used Mancos EUR Distribution because of anticipated extreme impermeable nature of reservoirs 
EUR probability distribution (V*):

Minimum Median Max 
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth 
EUR (BO or 
MMCF) 0 ( 2.6 ) (27) 140 (290) ( 600 ) 800
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USGS-DOE NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch .Province Name, No.: Uinta

Date:_2/25/94. _Play Name, No.: Paleozoic Strata: 200SU
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Qil____or _X_Gas (I Q _X_Confirmed or __Hypothetical (IV A)

Play Probability (0-1.0) (n A): .05 Stop here if play does not exceed 0.10 (n B)

mi2 (acres/640)Cells (IH) Cell Size (IU AH: 160 (80-640^ acres:
Area of NOSR 2 (III A2): 141 mi2 Total no. of cells (in A3): _
No. of productive cells (IU B): _Q_ No. of nonproductive cells (III C): 0
No. of untested cells (III D): 564 50th fractile
Minimum possible number of untested cells (in El): 141 100th fractile
Maximum possible number of untested cells (HI E2): 1128 Oth fractile

(00) £
Success ratio (0-1.0) (IV): ___ '£
EUR probability distribution (V*): £ 

Minimum Median
Fractile: 100th (95th)
EUR (BO or
MMCF) __

Max 
(75th) 50th (25th) (5th)

_ (_)
Not assessed because of low play probability and lack of wells to generate EUR distribution

Oth

Paleozoic Strata Gas- 2005

NOSR 2
Play Number & Name:

Source for Well Data: 

Comments: 

Screen Data:

Play 2005: Not Viable and Not Assessed: Paleozoic 

Petroleum Information: cumulative production to July of 1993 

One well in production data base. Produced 1 month (1/76).

Designated area of play Formations - White Rim, Coconino, Weber, 
Kaibab, Redwall, Madison, Leadville 
Active or inactive status

Total number of wells that meet screening criteria: 1 

Total number of wells used in the EUR Distribution: 0 

Insufficient data to generate an EUR Distribution.
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NOSR2Play2017
ucrocr

I 17E

NOSR 2 Play No. 2017 Wasatch Formation: gas/water contacts

Play Area- Wasatch Production (indudes Uteland Bune. Chapita, 
& Buck Canyon zones) from this area

Area most like that anticipated at SE 2/3 of NOSR 2; EUR analysis emphasizes 
this area

NavaJ Oil Shale Reserve (NOSR) 2

USGS-DOE NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch .Province Name, No.: Uinta

Date: 3/26/94 Plav Name, No.: Wasatch Gas /Water Contacts. 2Q17_
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Oil____or _X_Gas (I C) X Confirmed or ...Hypothetical (IV A)_______________

368 records at cell size of 160 acres = cells tested most successful near sat gas so degraded for other area 
Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 (II B)

Cells (III) Cell Size (III AD: 160(640-4(1) acres: ____ mi2 (acres/640) 
Area of NOSR 2 (III A2): 99 mi? Total no. of cells (HI A3): _ 
No. of productive cells (HI B): _Q_ No. of nonproductive cells (III C): 0 
No. of untested cells (HI D): 396 50th fractile 
Minimum possible number of untested cells (III El): 99 100th fractile 
Maximum possible number of untested cells (III E2): 1584 Oth fractile 
(.44)

Success ratio (0-1.0) (IV): .3
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) __Q_ ( 11 } ( 90 ) 300 ( 1000 ^ ( 2550 ) 4000
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Play Number & Name: 

Notes:

Wasatch with Gas/Water Contacts 2017

Divided area into 21 segments; spanning the drilling history, 40% of 
wells in each area were randomly selected for analysis; inactive 
wells included. Repetitive downtime is not in forecast.

Total number of wells that meet screening criteria: 

Total wells used in EUR Distribution: 

Calculation of EUR: See play 2015. 

EUR probability distribution:

131

51(40%)

Fractile % 
0
5
25
50
75
95
100

EUR (MMCF)
4000
2550
1000
300
90
11
0

.Ol .1 JL .5 1 2 S 10 20 30 <0 SO «0 70 M «0 *S «« W

Percent of Cells in Play 2017 with Higher Estimated Ultimate Recovery (EUR)
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NOSR2 Play 2016

NOSR 2 Play 2015 and 2016: Wasatch Formation: gas-saturated

Play Area 2015- Wasatch Formation Production
(includes Uteland Butte, Chapita. and Buck Canyon zones) from this area

Play Area 2016- Wasatch Formation Production
(includes Uteland Butte. Chapita, and Buck Canyon zones) from this area

Naval Oil Shale Reserve (NOSR) 2

USGS-DOE NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch_______Province Name, No.: Uinta
Date: 3/26/94 Plav Name. No.: Wasatch Gas Saturated Extension. 2016 ,

Play Type: -__Oil
(codes in parenthesis, such as IV B, refer to the procedure outline) 
or_X_Gas(IC) _X_Confirmed or_Hypothetical(TVA)

30 records = cells tested at 160 acres per cell 
Play Probability (0-1.0) (H A): 1 Stop here if play does not exceed 0.10 (II B)

Cells ail) Cell Size (IH AD: 160(640-40) acres: __ mi2 (acres/640) 
Area of NOSR 2 (III A2): 8 mi2 Total no. of cells (III A3): 32 
No. of productive cells (III B): 0 No. of nonproductive cells (III C): _Q 
No. of untested cells (III D): 32 50th fractile
Minimum possible number of untested cells (HI El): 8 100th fractile '* 
Maximum possible number of untested cells (III E2): 128 Oth fractile

Success ratio of Play in NOSR 2 area (0-1.0) (IV): _J__
EUR probability distribution for entire play 2016 (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) 0 ( 230 ) ( 670 ) 1080 ( 2050 ) ( 2650 ) 4500
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Play Number & Name: 

Notes:

Wasatch Formation Gas Saturated West 2016 

See play 2015

Total number of wells that meet screening criteria:

Total number of wells used in the EUR Distribution:

Calculation of EUR: see play 2015. 

EUR probability distribution:

Fractile %
0
5
25
50
75
95
100

One well in play area in the PI database. 
Analog production area is T10S, R. 19E, the 
westernmost Wasatch production from Play 
2015, east of the Green River. Fifty wells 
meet criteria.

41 (erratic production history and excessive 
downtime prevented DCA of some wells)

EUR (MMCF)
4500
2650
2050
1080
670
230
0

10XWO

-01 .13511 5 10 20304050607060 90«

Percent of Cells in Play 2016 with Higher Estimated Ultimate Recovery (EUR)
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NOSR2Play2015

NOSR2Play 2015 and 2016: Wasatch Formation: gas-saturated

Play Area 2015- Wasatch Formation Production
(includes Uteland Bufle. Chapita. and Buck Canyon zones) from this area

Play Area 2016- Wasatch Formation Production
(includes Uteland Gutte. Chapita. and Buck Canyon zones) from this area

Naval Oil Shale Reserve (NOSR)2

NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch

Date: 3/26/94

.Province Name, No.: Uinta

_Play Name, No.: Wasatch Gas-Saturated Main. 2015
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Oil____or X Gas (1C) _X_Confirmed or_Hypothetical(IVA)

Play Probability (0-1.0) (II A):_JL Stop here if play does not exceed 0.10 (n B)

Cells (III) Cell Size OH AH: 160(640-40) acres: ____ mi2 (acres/640)
Area of NOSR 2 (IIIA2): 34 mi2 Total no. of cells (IE A3): 136
No. of productive cells (in B): _Q_No. of nonproductive cells (in C): _Q_
No. of untested cells (in D): 136 50th fractile
Minimum possible number of untested ceils (III El): 34 100th fractile
Maximum possible number of untested cells (III E2): 544 Oth fractile

(.88)
Success ratio of play in NOSR 2 area (0-1.0) (IV): .75
EUR probability distribution (V*) from entire area of Play 2015: 

Minimum Median
Fractile: 100th (95th) (75th) 50th (25th)
EUR (BO or
MMCF) Q ( 32 ) (_^2D ) ill

(5th)
Max 
Oth

6500
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NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch .Province Name, No.: Uinta

Date: 4/19/94 Play Name, No.: Wasatch Gas-Saturated Main. 2015

Play Type: -_Oil
(codes in parenthesis, such as IV B, refer to the procedure outline) 

or X Gas (I C)____ X Confirmed or _Hypothetical (IV A)

Play Probability (0-1.0) (II A):_l_ Stop here if play does not exceed 0. 10 (II B)

Cells (HI) Cell Size (HI AH: 40 (80-20V acres: ____ mi2 (acres/640) 
Area of NOSR 2 (in A2): 34 mi2 Total no. of cells (III A3): 
No. of productive cells (III B): 0 No. of nonproductive cells (III C): 0 
No. of untested cells (III D): 544 50th fractile 
Minimum possible number of untested cells (III El): 212 100th fractile 
Maximum possible number of untested cells (in E2): 1088 Oth fractile

Success ratio of entire play in at 40 acre spacing (0-1.0) (IV): .9
EUR probability distribution (V*) from entire area of Play 2015:

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) 0 ( 32 ) ( 520 ) 1100 ( 1900 ) ( 3300 ) 650

544

NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist:. Tom Fouch .Province Name, No.: Uinta.

Date: 3/26/94 Play Name, No.: Wasatch Gas-Saturated Main. 2015

Play Type: -_Oil
(codes in parenthesis, such as IV B, refer to the procedure outline) 

or X Gas (I C) _X_Confirmed or _Hypothetical (IV A)

Play Probability (0-1.0) (II A): 
Cells (III)

J__ Stop here if play does not exceed 0.10 (II B) 
Cell Size (HI AD: 80(160-40) acres: ____ mi2 (acres/640)
Area of NOSR 2 (III A2): 34 mi2 
No. of productive cells (III B): 0 
No. of untested cells (HI D): 272
Minimum possible number of untested cells (III El): 
Maximum possible number of untested cells (III E2):

Success ratio of entire play 2 area (0-1.0) (IV): .9
EUR probability distribution (V*) from entire area of Play 2015: 

Minimum Median
Fractile: 100th (95th) (75th) 50th (25th)
EUR (BO or
MMCF) Q ( 32 ) ( 520 ) 1100 ( 1900

Total no. of cells (III A3): 272 
No. of nonproductive cells (III C): 0 
50th fractile

100th fractile 
Oth fractile

(5th)

( 3300

Max 
Oth
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Play Number & Name: 

Source for well data:

Notes: 

Screen Data:

Wasatch Formation Gas Saturated East 2015

Petroleum Information: Cumulative production data until July
1993

i

No pressure data available. Plot of EUR vs. Production date 
indicated no learning curve over time. EUR calculations 
reflect current spacing

Wasatch Formation > 3,000 ft depth to top of perforations 
< 1991 production start date, drilling history 1976-1990 
Wells were selected at random taking into account above 
Inactive wells included

Total number of wells that meet screening criteria: 226 

Total number of wells used in EUR distribution: 45 (20%) 

Calculation of EUR: Decline curve analysis (DCA)

Assumptions:
No backpressure effects, radial flow, producing in depletion
stage, cumulative effects o factors altering production in
history = cumulative effects in future, etc.,
Segmented exponential declines are used.
Life of a well is assumed to be 35 years maximum or will
produce until an economic limit of 10 MCFD is reached. If
necessary, a constant decline rate is imposed during the last
five years to force the production rate to the economic limit of
10 MCFD in year 35.
Inactive wells do no resume production in this analysis.
A consistent history of downtime for a given well was reflected
in the production forecast for that well (play 2015 only).

EUR probability distribution:

Fractile %
0
5
25
50
75
95
100
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NOSR 2 Play 2019

NOSR 2 Play No. 2019: Cretaceous Mesaverde Gas-Water Transitional

Play Area: Mesaverde Group reservoirs at drilling depths near and less
than 15.000ft. Mesaverde Group strata indude the Rim Rock. Castlegate. 
and Sego Sandstones, and the Blackhawk. Tuscher. Farrer. Price River, 
and Neslen Formations. Contains mixed water- and gas-bearing strata.

'-70

Naval Oil Shale Reserve (NOSR) 2

Level of vrtrinrte reflectance (measure of termal maturity) 
on basal Mesaverde

USGS-DOE NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch .Province Name, No.: Uinta

Date: 3/28/94 Plav Name, No.: Mesaverde Gas-Water Transitional 2019
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Oil or _X_Gas (I C) _X_Confirmed or _Hypothetical (IV A)

160 records at It 160 acre spacing = 160 cells tested 
Play Probability (0-1.0) (II A):_l__ Stop here if play does not exceed 0.10 (II B)

Cells (IH) Cell Size (HI AH: 160(640-40) acres: ____ mi2 (acres/640) 
Area of NOSR 2 (III A2): 99 mi2 Total no. of cells (III A3): _ 
No. of productive cells (HI B): 0 No. of nonproductive cells (III C): 0 
No. of untested cells (HI D): 396 50th fractile
Minimum possible number of untested cells (IE El): 99 IOQth fractile 
Maximum possible number of untested cells (III E2): 1584 Oth fractile

Success ratio (0-1.0) (IV): .25
EUR probability distribution (V*):

Fractile:
EUR (BO or
MMCF)

Minimum Median
100th (95th) (75th) 50th

0 ( 1 ) ( 25 ) 38Q

(25th)

(_75QJ

(5th)

umj

Max
Oth

3000
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Play Number & Name: MESAVERDE GAS/WATER TRANSITIONAL2019

Notes: See notes for play 2015.

Total number of wells that meet screening criteria: 30

Total number of wells used in the EUR Distribution: 25

Calculation of EUR: See play 2015.

EUR probability distribution:

Fractile %
0
5
25
50
75
95
100

EUR (MMCF)
3000
1950
750
380
25
0
0

1.000

.01 -I .2 S \ 1 5 10 20 30 40 SO 60 70 80 90 95

Percent of Cells in Play 2019 with Higher Estimated Ultimate Recovery (EUR)
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NOSR2Play2018

NOSR 2 Play No. 2018: Cretaceous Mesaverde Gas Saturated

%#4 Play Area: Mesaverde Group reservoirs at drilling depths near and less 
<VY//A than 15.000ft . Mesaverde Group strata indude the Rim Rock. Castlegate.

and Sego Sandstones, and the Blackhawk. Tuscher. Farrer. Price River.
and Nesten Formations. Contains gas-saturated strata.

.10

Naval Dl Shale Reserve (NOSR) 2

Level of vitrinite reflectance (measure of termal maturity) 
on basal Mesaverde

USGS-DOE NOSR 2 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist' Tom Fouch .Province Name, No.: Uinta

Date: 3/27/94 Plav Name, No.: Basin Flank Mesaverde Gas Saturated < 15.000.2018
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_QiI____or _JC_Gas (I C) X Confirmed or _Hypothetical (IV A)_____

Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 (II B)

Cells (IE)

(.22)

Cell Size (III Al): 160(640-80) acres: ____ mi2 (acres/640) 
Area of NOSR 2 (III A2): 42 mi2 Total no. of cells (III A3): __ 
No. of productive cells (III B): 0 No. of nonproductive cells (III C): 0 
No. of untested cells (HI D): 168 50th fractile 
Minimum possible number of untested cells (III El): 42 100th fractile 
Maximum possible number of untested cells (III E2): 336 Oth fractile

Success ratio for entire play (0-1.0) (IV): 
EUR probability distribution (V*):

Fractile:
EUR (BO or
MMCF)

Minimum
100th

-*-

(95th)

( 1.0 )

(75th)

CKXLJ

Median
50th (25th)

_^80_ U2QVJ

1 Max
(5th) Oth

( 2100 ) 3000
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Play Number & Name: MESAVERDE BASIN FLANK 2018 

Notes: . See play 2015 

Total number of wells that meet screening criteria: 16 

Total number of wells used in the EUR Distribution: 15 

Calculation of EUR: See discussion for play 2015. 

EUR probability distribution:

Fractile %
0
5
25
50
75
95
100

EUR (MMCF1
3000
2100
1200
480
100
0
0
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Percent of Cells in Play 2018 with Higher Estimated Ultitnate Recovery (EUR)
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NOSR 1 & 3 Play 2008
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USGS-DOE NOSR 1 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch .Province Name, No.: Piceance

Date: 3/26/94 Plav Name, No.: Wnsatch Gas-Saturated. 2008
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Qil or^X_GasflC) x Confirmed or _Hypothetical (IV A)

Play Probability (0-1.0) (H A): 1 Stop here'if play does not exceed 0.10 (II B)

Ceils an) Cell Size (HI AH: 160 (320-80^ acres: 
Area of NOSR 1 37,500 acres (HI A2):

mi2 (acres/640)
Total no. of cells (III A3): 234 

No. of productive cells in NOSR 1 (HI B): 0 No. of nonproductive cells in NOSR (III C): _Q_ 
No. of untested cells (HI D): 234 50th fractile 
Minimum possible number of untested cells (HI El): 117 100th fractile 
Maximum possible number of untested cells (III E2): 472 Oth fractile

Success ratio of entire play to be used on NOSR 1(0-1.0) (IV): .83
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) Q ( 8 ) ( 220 ) 580 (1050) ( 1600 ) 2600

EUR Distribution and Cell success ratio developed by FD Services for Grand Vallev, Parachute, and Rulison Fields

Fouch and others 1 01 Oil and Gas Resources of U.S. Naval Oil Shale Reserves



USGS-DOE NOSR 3 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch

Date: 3/26/94

_Province Name, No.: Piceance

_Play Name, No.: Wasatch (7as-Saturated. 2008
(codes in parenthesis, such as IV B, reter to the procedure outline) 

Play Type: -_Oil____or X Gas (1C) X Confirmed or _Hypothetical (IV A)

Play Probability (0-1.0) (U A): Stop here if play does not exceed 0.10 (II B)

Cells (in) Cell Size (HI AH: 160(640-80) acres: ____ mi2 (acres/640)
Area of NOSR 3 18,040 acres (HI A2): Total no. of cells (III A3): 113
No. of productive cells (HI B): _6_ No. of nonproductive cells (IH C): I
No. of untested cells (in D): 106 50th fractile
Minimum possible number of untested cells (HI El): 26 100th fractile
Maximum possible number of untested cells (III E2): 217 Oth fractile

Success ratio (0-1.0) (IV): .83
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) Q CJD ( 220 ) 580 (1050) ( 1600 ) 2600

EUR Distribution and cell success ratio developed by FD Services for Grand Valley, Parachute, and Rulison fields

NOSR1 & 3
Play Number & Name:

Source for Well Data: 

Comments:

Screen Data:

Play 2008, Wasatch Gas Saturated

Petroleum Information : cumulative production to July of 1993

Pressure data is unavailable.
Plot of EUR vs. Initial Production Date does not support a learning curve.
EUR calculations reflect current spacing.

Wasatch Formation 
Rulison and Parachute Fields 
Initial production date < 1990 
Active or inactive status

Total number of \vells that meet screening criteria: 

Total number of wells used in the EUR Distribution:

30

24 (Rulison Field only)

Calculation of EUR:

EUR Probability Distribution:

Decline Curve Analysis (DCA) 
Assumptions:
No back pressure effects, radial flow, producing in the depletion 
stage, cumulative effects of factors altering production in the history of the 
well = cumulative effects in the future,etc. 
Segmented exponential declines are used.
Life of a well is assumed to be 35 years maximum or will produce until an 
economic limit of 10 MCFD is reached. If necessary, a constant decline rate 
is imposed during the last five years to force the production rate to the eco 
nomic limit of 10 MCFD in year 35. 
Inactive wells remain idle. 
Downtime is assumed negligible in the future.

EUR (MMCF) 
2200 
1400 
720 
380 
95 
14 
0
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NOSR 1 & 3 Play 2007

USGS-DOE NOSR 1 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch________Province Name, No.: Piceance

Date: 4/20/94 Play Name, No.: Mesaverck- Gas-SaturateJ. 2007
  (codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Oil or X Gas (I C) X Confirmed or _Hypdthetical (IV A)____________________________

Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 (H B)
Cells (III) Cell Size (IH AH: 80(160-40) acres: ____ mi2 (acres/640) 

Area of NOSR 1: 37,500 (HI A2): Total no. of cells (HI A3): 469 
No. of productive cells in play (III B): 0 No. of nonproductive cells in play (in C): _ 
No. of untested cells in NOSR 1 (III D): 469 50th fractile
Minimum possible number of untested cells in NOSR 1 (III El): 234 100th fractile 
Maximum possible number of untested cells in NOSR 1 (III E2): 938 Oth fractile

Success ratio of (play) (0-1.0) (IV): .71
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) 0 ( 700) (1250) 1700 ( 2700) 3000 (4000)

EUR Distribution and Cell success ratio developed by FD Services for Grand Valley, Parachute, and Rulison fields. Includes 
"behind-the-pipe gas" and gas from the Cameo Coal sequence.

USGS-DOE NOSR 1 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch________Province Name, No.: Piceance

Date: 4/20/94 Play Name, No.: Mesav>;rde Gas-Saturated. 2007
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -_Oil or X Gas (I C) X Confirmed or ...Hypothetical (IV A)___________________________

Play Probability (0-1.0) (II A): 1 Stop here if play does not exceed 0.10 (E B)
Cells (III) Cell Size (HI AIV. 160(640-40) acres: ____ mi2 (acres/640)

Area of NOSR 1 37.500 acres (10 A2): Total no. of cells (HI A3): 234 at 160 spacing
No. of productive cells in play (in B): 354 No. of nonproductive cells in play (HI C): 142
No. of untested cells in NOSR 1 (IH D): 234 50th fractile
Minimum possible number of untested cells in NOSR 1 (III El): _59_100th fractile
Maximum possible number of untested cells in NOSR I (III E2): 472 Oth fractile

Success ratio of (play) (0-1.0) (IV): .71
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) 0 ( 700) (1250) 1700 ( 2700) 3000 (4000)

EUR Distribution and Cell success ratio developed by FD Services for Grand Valley, Parachute, and Rulison fields. Includes 
"behind-the-pipe gas" and gas from the Cameo Coal sequence.
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USGS-DOE NOSR 3 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch _______ Province Name, No.: Uinta-Piceance

Date: 3/26/94 Play Name, No.: Mesaverde Gas-Saturated. 2007
(codes in parenthesis, such as IV B t refer to the procedure outline) 

Play Type: -_Oil or _X_Gas (I C) _X_Confirmed or _Hypothetical (IV A)

160 records at It 160 acre spacing = 160 cells tested
Play Probability (0-1.0) (II A): 1 _______ Stop here if play does not exceed 0.10 (II B) _______

Cells (IU) Cell Size (in AD: 80(160-40) acres: ___ mi2 (acres/640) 
Area of NOSR 3 18,040 acres (in A2): Total no. of cells (in A3): _225 
No. of productive cells in play (in B): 3 No. of nonproductive cells in play(III C): 1 
No. of untested cells (III D): 221 50th fractile
Minimum possible number of untested cells (III El): 111 100th fractile 
Maximum possible number of untested cells (III E2): 443 Oth fractile

Success ratio of play (0-1.0) (IV): .71
EUR probability distribution (V*):

Minimum Median Max
Fractile: 100th (95th) (75th) 50th (25th) (5th) Oth
EUR (BO or
MMCF) _0_ . ( 700) (1250) 1700 ( 2700) 3000 (4000)

EUR Distribution and Cell success ratio developed by FD Services for Grand Valley, Parachute, and Rulison fields. 
Includes "behind-the-pipe gas" and gas from the Cameo Coal sequence.

17720 acres untested

USGS-DOE NOSR 3 ASSESSMENT 
DATA FORM FOR ASSESSMENT OF CONTINUOUS-TYPE ACCUMULATIONS

Province Geologist: Tom Fouch _______ Province Name, No.: Uinta-Piceance

Date: 3/26/94 Plav Name, No.: Mesaverde Gas-Saturated. 2007
(codes in parenthesis, such as IV B, refer to the procedure outline) 

Play Type: -__Oil ____ or X Gas (I C) X Confirmed or ...Hypothetical (IV A) __________________

160 records at It 160 acre spacing = 160 cells tested
Play Probability (0- 1.0) (II A): 1 Stop here if play does not exceed 0.10 (II B)

Cells (IU) Cell Size an A 1): 160(640-40) acres: ' ____ mi2 (acres/640) 
Area of NOSR 3 18,040 acres (HI A2): Total no. of cells (IE A3):
No. of productive cells in play (III B): 354 No. of nonproductive cells in pIay(IH C): 142
No. of untested cells (III D): 110 50th fractile
Minimum possible number of untested cells (III El): 27 100th fractile
Maximum possible number of untested cells (in E2): 440 Oth fractile 

Success ratio of (play) (0-1.0) (IV): _.71 __ 
EUR probability distribution (V*):

Minimum Median Max 
Fractile: 100th (95th) (75th) 50th (25th) (5th Oth 
EUR (BO or 
MMCF) 0 ( 700 ) (1250) 1700 ( 2700) 3000 (4000)

EUR Distribution and Cell success ratio developed by FD Services for Grand Valley, Parachute, and Rulison fields. 
Includes "behind-the-pipe gas" and gas from the Cameo Coal sequence.
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NOSR1 & 3
Play Number & Name:

Source for Well Data: 

Comments:

Screen Data:

Play 2007, Mesaverde

Petroleum Information : cumulative production to July of 1993

Pressure data is unavailable.
Plot of EUR vs. Initial Production Date does not support a learning
curve.
EUR calculations reflect current spacing.

Piceance Basin
Mesaverde Formation
Fields - Grand Valley, Rulison, Parachute, Coon Hollow, Sheep
Creek, Logan Wash, Buzzard Creek, Hells Gulch, Sulphur Creek,
Debeque, Divide Creek, Mam Creek, Plateau
Initial production date < 1989
Active or inactive status

Total number of wells that meet screening criteria: 87 

Total number of wells used in the EUR Distribution: 74

Calculation of EUR:

EUR Probability Distribution:
Fractile 

0 
5

25 
50 
75 
95 
100

Decline Curve Analysis (DCA)
Assumptions:
No back pressure effects, radial flow, producing in the depletion
stage, cumulative effects of factors altering production in the
history of the well = cumulative effects in the future, etc.
Segmented exponential declines are used.
Life of a well is assumed to be 35 years maximum or will produce
until an economic limit of 10 MCFD is reached. If necessary, a
constant decline rate is imposed during the last five years to force
the production rate to the economic
limit of 10 MCFD in year 35.
Inactive wells remain idle.
Downtime is assumed negligible in the future.

EUR (MMCF) 
2000 
1350 
440 
170 
70 
7 
0
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APPENDIX B 

SEISMIC DATA ACQUISITION AND REPROCESSING
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SEISMIC DATA ACQUISITION AND REPROCESSING

Recording Parameters

Two data sets were recorded on and adjacent to NOSR-2. One data set is composed of 8 lines (desig 
nated TRW-1 through TRW-8), originally recorded for TRW corporation in 1981 and owned by the Dept. 
of Energy with full publication rights. The other data set is composed of 4 lines (designated ADC-1, 2,4, 
and 5), originally recorded for Champiin Oil in 1979 and purchased by the Dept of Energy, with limited 
publication rights (see below).

The ADC data set has, in general, better signal to noise ratio and is somewhat easier to interpret than 
the TRW data set. This enhanced data quality of the ADC lines is most likely due to their being recorded 
with twice the number of recording channels and a 3000' greater source-receiver offset than that of the 
TRW lines. Table JM 1 gives a summary of the main recording parameters for each data set.

Data Set: TRW ADC
#of Recording Channels: 48 96
Energy Source: Vibroseis Vibroseis
Geophone Spacing: 220 ft. 220 ft.
Source Spacing: 440 ft. " 440 ft.
Nominal Fold: 12 24
Sweep Frequencies: 58-12 HZ 56-14 HZ
Sweep Length: 14s 16s
Near/Far Offset: 660/8,360 ft. 990/11,330 ft.
Correlated Record Length: 5s 4s
Recording Instrument: DFS III SERCEL

Table JM 1: Recording parameters for the seismic lines.

Data Processing

All of the lines were reprocessed using a standard processing sequence that included spiking 
deconvolution, surface-consistent residual statics analysis, and wave-equation migration (applied after stack 
ing). Where necessary, crooked line geometry was applied in areas where the recording line deviated 
significantly from a straight line. The TRW data set was prewhitened before cross correlation (Conih and 
Costain, 1983). Processing parameters were kept as consistent as possible and were tied at line intersec 
tions to facilitate the interpretation.

Prior to migration, the data were shifted to a horizontal datum of +6,600 ft. above sea level and the 
ADC lines were shifted to a horizontal datum of +6000 ft. above sea level. The velocity used for both 
datum shifts was 10,000 ft/sec.; thus, there is a 120 ms bulk shift between datums of the two data sets. The 
velocities used for migration were determined as follows: each stacked section was migrated a number of 
times, each time using a different, time- and space- invariant velocity function (called constant velocity 
migration, or CVM). A migration velocity model that varied in space and time was then constructed from 
the CVM's and the data were migrated using that model.

USGS/DOE Publication Rights

These ADC seismic lines are proprietary industry profiles, purchased by the U.S. Department of En 
ergy with limited publication rights. These data were purchased from Union Pacific Resources Company, 
through Geodata Corporation. The data may be shown in page size illustrations without shotpoints.
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RESOURCE ASSESSMENT OF THE NAVAL OIL SHALE RESERVES #1 AND #3 
CONVENTIONAL PENNSYLVANIAN-PERMIAN PLAY - A RATIONALE

W.C. Butler

GENERAL STATEMENT

This hypothetical hydrocarbon play in the Pennsylvanian-Permian stratigraphic section is highly specula 
tive; strata of this age are essentially unexplored by drilling in this pan of the Piceance basin. Hydrocarbon- 
water contacts are assumed in this play, i.e., if the reservoirs were gas saturated, this method of assessment 
would not be appropriate. The NOSR 1 & 3 area is outside the play area but is assesed here because of the 
interest in the potential under the Reserves. This assessment combines both Naval Oil Shale Reserves #1 
(37,550 acres) and #3 (18,040 acres) because of their common boundary, overall relatively small areas, and 
splintered arrangement, i.e., small parcels of each NOSR are juxtaposed to each other. However, if necessary at 
a later time, NOSR #3 may be considered a cluster of the total assessed acreage with resources allocated only to 
it.

Non-associated gas is the stable hydrocarbon species expected in the area. It was assessed using the engi 
neering-model FASPU (Fast Appraisal System for Petroleum - Universal version) computer program (Crovelli 
and Balay, 1986, 1988, 1990). This assessment program was made available to scientists and engineers of the 
Department of Energy (Washington, D.C. and Casper, WY.) during meetings with the U.S. Geological Survey 
in 1993. Although the reservoirs will be tight, it is because individual potential traps with gas-water contacts, if 
present, can be approximately delineated, that the area is assessed using this conventional assessment 
method.

All input data to the FASPU program are presented in the computer printouts (exhibit A). The estimated 
undiscovered recoverable resources are listed in the same attached printout (figure FB-1) under the uncondi 
tional play probability category. Because the targets in this area are so deep, the estimated resources calculated 
by this model cannot be defined as economically recoverable at this time. However, an assessment using 
conventional methodology is important and should be done in order to compare with other unconventional 
(continuous gas saturation "bubbles") assessment methodologies presented in this report. Secondly, it is done 
in order to anticipate future questions about the potential Upper Paleozoic resource base which is very signifi 
cant in the northern Piceance basin.

In addition to the conventional-type hydrocarbon accumulation model, another assumption is made that the 
structure of the potential Upper Paleozoic reservoirs reflects the present-day basement structure. Precambrian 
basement blocks (horsts, grabens, and half-grabens) owe their origin to pre-existing zones of weakness estab 
lished during Precambrian time. These blocks were rearranged during Late Paleozoic tectonism creating the 
Ancestral Rockies, and then overprinted by the Late Mesozoic to Early Cenozoic Laramide orogeny.

The nearest production from reservoirs of this age is 35-40 miles to the northwest and north (Douglas 
Creek, Wilson Creek, and Thornburg fields). However, the primary reservoir rocks in these fields are not well 
developed or preserved under NOSR 1 and 3. Although the marginal play probability (presence of charge, 
source rock, migration, timing, reservoir rock, seals, and trapping) is fairly low, the conditional play probability 
that at least one accumulation (dri liable prospect) of minimum size exists is somewhat lower. The success ratio 
of finding Pennsylvanian-Permian production elsewhere in the Piceance basin was estimated in order to pro 
vide a reasonable play probability to apply to the overall assessment. This however, was not really representa 
tive of the NOSR area because of the lack of testing (statistical sampling) of the section by drilling, and because 
of the extreme drilling depths at NOSRs #1 and #3. A north-south strip of oil-saturated outcrops, plus drilling 
shows (oil swabbed from borehole), have been reported in the White River uplift area within just a few miles 
northeast of NOSR #3 on the east side of the Grand Hogback fault Although the structural framework changes 
over a short distance from the uplift to the NOSR area, these hydrocarbon occurrences suggests that petroleum 
could be "in the system" fairly close to the assessment area.
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General Stratigraphic Framework

The overall Pennsylvanian-Permian Stratigraphic section at NOSRs 1&3 consists of marginal-marine blan 
ket redbed sandstones shed north-northeastward off the rising Uncompahgre Mountains. These arkosic to 
subarkosic units are about 3,000 to more than 4,000 feet thick, increasing in a general east-northeast direction. 
The redbed parts of the section generally are not good quality reservoirs. Most of the upper pan of the strati- 
graphic section includes the continental Weber(?)-Maroon Formations about 1,000 to 2,000 feet thick from 
west to east, respectively. The Weber Formation is generally a light-colored to gray, clean well-sorted eolian 
sandstone providing excellent reservoir qualities. An important consideration is that the quality of Pennsylva 
nian-Permian reservoirs generally deteriorates from the Colorado-Utah border eastward to the Eagle basin. At 
Rangely field, the largest known oil accumulation in the U.S. Rockies, 50 miles northwest of NOSR #1, the 
ultimate oil recovery is expected to be over 955 million barrels from depths of 5,200-6,600 feet. Production is 
from the "Schoolhouse Member" or tongue of the Weber Formation which is a diagenetic facies of the Maroon 
Formation. The latter is a predominately red poorly-sorted arkosic clastic unit of shaly sandstone to sandy shale 
and limey mudstone totaling about 400-1200 feet thick. The marine Morgan Formation may be in part a 
temporal equivalent to the Maroon Formation; it disconformably underlies the Maroon Formation and may 
interfinger into the assessment area. This disconformity may have significance in locally trapping hydrocar 
bons in this play.

Subjacent to, and interbedded with, the Maroon Formation is the Mintum Formation of 1,000-2,000 feet of 
impure poorly-sorted clastic strata and lesser carbonate'strata. These carbonates may also serve as potential 
reservoirs and have better porosity than the tight sandstones. Gypsum lenses of the Eagle Valley Formation, an 
evaporite facies of the Maroon and Mintum Formations, may extend westward into the assessment area.

Potential source rocks may include the Belden Shale, a limy shale up to 400 feet thick, if present, near the 
base of the Pennsylvanian section. Other potential source rocks, if present, may include the Park City-Phosphoria 
Formations, as much as 200 ft thick near the top of this play reservoir. The source of petroleum at Rangely, 
whether the Belden Shale or the Park City-Phosphoria Formations, is questionable and debated among geolo 
gists who work the Piceance basin.

This play is based on the premise that the Maroon Fm.-Mintum Formations and possibly Weber reservoirs 
do indeed exist in the NOSR 1&3 area at depths between 15,000 and 20,000 feet Long-range migration of 
petroleum is not required to fill potential traps. Thermal dry gas is the principal hydrocarbon species that would 
be chemically stable at these depths. As such, drilling for the Upper Paleozoic targets may not be economically 
feasible in the deeper parts of the Piceance basin; if the probability for discovering oil was higher, the targets 
would be more attractive for exploration. Thickness of the primary pay zone is projected to be about > 150 feet; 
porosity is estimated to be fairly tight at below 10 percent, probably averaging 5-6 percent.

General Structural Framework

Thickness of the Phanerozoic strata in the NOSR part of the Piceance basin is, based on seismic data, 
believed to be as much as 5,000 feet thicker than depicted on previous regional maps, such as in Mallory 
(1972), Tweto (1983), and Spencer and Wilson (1988). Seismic data also help define areas of drillable pros 
pects within the play outline. The play is primarily a structural play, although a Stratigraphic component may be 
developed. Various models of fault-and-fold geometry can fit our existing data, and thus we present one ex 
ample only. Data for the regional basement surface structure was taken from unpublished work by Ogden 
Tweto, U.S. Geological Survey. This surface was modified using seismic lines processed and interpreted for 
this study. In this conventional resource model, the faults must be assumed to be sealed in the lowest part of the 
basin. Paleozoic structure was interpreted from 4 seismic lines in the assessment area: 1) Grant NORPAC 
Tensor #1 and #3, 2) Seis-Port Explorations, Inc., and 3) Celsius Energy Corporation (1-70 line from Rifle to 
Parachute). See Waechter and Johnson (1986, plate 2) for their interpretation of seismic line #4.

To invoke only Stratigraphic trapping (possible along the upthrown side of the basement blocks, but at a 
lesser degree of certainty) would make the play too speculative to consider. Disconformities and porosity- 
permeability pinchout traps are possible where redbeds (seals) interringer with cleaner sands, but structure 
seems to be a necessary ingredient for most of the other Piceance basin accumulations similar to this play.

Structural traps flank the north west-trending Precambrian horsts (paleo-highs) as depicted on seismic line 
cross-sections. The displacement of the basement blocks is not simple; the data suggest that movement has
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been intermittent with different senses of adjustments (throw) throughout their long history. Movement along 
some of the bounding normal faults seems to be "up" at one end of the block and "down" at the other end, as in 
the analogous movement of piano keys. Rotation of these blocks probably occurred around both their north 
east- and northwest-trending axes. The horsts may have either a reduced or a completely missing Pennsylva- 
nian-Permian section due to erosion; drillable prospects are therefore limited to the flanks of these structures.

The primary high-angle basement faults trend almost due northwest and secondary faults trend northeast. 
The northeast-trending faults are undoubtedly longeron the map view than conceptually depicted, but their true 
extent is unknown at present. Faults seem to parallel the stream/river drainages, that is, they may be expressed 
in the geomorphology of the assessment area. If some of the faults dip as much as 70 degrees, which is shown 
by seismic data, then their ground surface offset/expression may be from 4,700 to 7,300 feet, generally increas 
ing from southwest to northeast with the increasing depth to basement. This assumes the faults maintain their 
integrity and migrate upward and intersect the ground surface. Strata, however, may be draped over the faults 
exhibiting folds, or may be exhibited by a zone of fracturing rather than a single fault. Major fold structures at 
the Dakota Sandstone level trend about N39°-41°W south of the assessment area near Parachute and in the 
southwestern part of the NOSR area. Orientations for the five ground surface fracture directions are: 1) N39°- 
58°W, 2) N9°-11°E, 3) N20°-42°E, 4) N65°-76°E, and 5) N1°E-N13°W. In the general assessment area, the 
high-angle major basement fault, GarMesa, has an offset as much as 5,500 feet, and the low-angle Grand 
Hogback thrust shows a displacement of 15,000-16,000 feet Only the faults with large displacements are 
readily apparent and mappable given the scarcity of subsurface information below the Cretaceous Dakota Sandstone.

Salt tectonics may also play a complicating role in the structural configuration of the Pennsylvanian and 
younger strata, particularly in the eastern part of the Colorado Naval Reserves. As additional subsurface infor 
mation becomes available with additional drilling and seismic data, the accuracy of the present structural model 
will undoubtedly improve significantly. As noted above, there are several solutions that currently satisfy the 
gross basement structure data (modification is possible within limits), and we acknowledge that the model 
presented here is just one example until additional information becomes available.

Quantitative Assessment Of Undiscovered Recoverable Non-Associated Gas

Input values to the FASPU program for volume parameters, such as trap closures and reservoir thicknesses, 
are derived from the basement structure map (BP-#5). It is assumed, for this exercise, that structural closure in 
the basement might be reflected in the overlying Pennsylvanian-Permian strata. There are no boreholes that 
penetrate these potential reservoirs in the area of NOSRs #1 and #3. Closure is created by the faults that cut 
basement rock. A distribution of seven volume attributes, from fractile 100 to 0, was established by calculating 
the area that could be considered "available trap" from the following basement map elevations:

FRACTILE STRUCTURE CONTOUR ACRES OF TRAP PER CUMULATIVE TRAP ACRES
ELEVATION INTERVAL INTERVAL

FIDO -15,000 to-14,000 FT 1,645 1,645
F95 -15,500 to-15,000 FT 1,766' 3,411
F75 -15,750 to-15,500 FT 1,850 5,261
F50 -16,500 to-16,000 FT 800 6,061
F25 -17,000 to-16,500 FT 3,526 9,587
F5 -17,500 to-17,000 FT 7,002 16,589
FO -18,250 to-17,500 FT 13,619 30,208

Results of undiscovered, technologically-recoverable, but not economic, resources from the FASPU As 
sessment program for this play are given below, as well as in EXHIBIT A. They are presented as five scenarios. 
Slight variations in play attributes, from conservative (pessimistic) to liberal (optimistic), were used to con 
struct the scenarios. Overall values for the geologic variable included these ranges: reservoir thickness, 25-500 
ft; porosity, 1-12%; trap fill, 5-75%; hydrocarbon saturation, 50-85%; and recovery factor, 8-15%. The reader 
can thus judge which scenario best fits his/her own prejudice, whether it is based on "hard data" or intuition. 
The exercise can be viewed as a Delphi assessment (by committee) with five experts giving their own range of 
input values. Fractile values indicate AT LEAST the amount shown. F50 is the median value.
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Scenario #1: Unconditional Results Using Very Pessimistic Input Values.

FRACTELE ESTIMATED NON-ASSOCIATED GAS 
BILLIONS OF CUBIC FEET

F95 0
F75 0
F50 (most likely) 0 Mean = 0.356
F25 0
F5 0

The risk of drilling a dry hole is: 0.978
The yield factor at F50 is: 562,120 cubic feet per acre____________________________

Scenario #2: Unconditional Results Using Pessimistic Input Values.

FRACTDLE ESTIMATED NON-ASSOCIATED GAS 
BILLIONS OF CUBIC FEET

F95 0
F75 0
F50 (most likely) 0 Mean =1.637
F25 0
F5 9.745 (1 chance in 20 this amount is present)

The risk of drilling a dry hole is: 0.923
The yield factor at F50 is: 562,120 cubic feet per acre______________________________

Scenario #3: Unconditional Results Using Moderate Input Values.

FRACTILE ESTIMATED NON-ASSOCIATED GAS 
BILLIONS OF CUBIC FEET

F95 0
F75 0
F50 (most likely) 0 Mean = 4.385
F25 0
F5 27.988

The risk of drilling a dry hole is: 0.836
The yield factor at F5Q is: 562.120 cubic feet per acre_______________________________

Scenario #4: Unconditional Results Using Optimistic Input Values.

FRACTILE ESTIMATED NON-ASSOCIATED GAS 
BILLIONS OF CUBIC FEET

F95 0
F75 0
F50 (most likely) 0 Mean = 13.970
F25 0
F5 79.985

The risk of drilling a dry hole is: 0.814
The yield factor at F50 is: 646,660 cubic feet per acre____________________________________
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Scenario #5: Unconditional results using very optimistic input values.

FRACTELE ESTIMATED NON-ASSOCIATED GAS
BILLIONS OF CUBIC FEET

F95 0
F75 0
F50 (most likely) 0 Mean =17.137
F25 14.646
F5 92.196

The risk of drilling a dry hole is: 0.802
The yield factor at F50 is: 480,960 cubic feet per acre
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EXHIBIT A 

FASPU - FAST APPRAISAL SYSTEM FOR PETROLEUM (UNIVERSAL)

COMPUTER PROGRAM 

INPUT AND OUTPUT DATA
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EXHIBIT Al - MOST PESSIMISTIC SCENARIO (#1)

FASP-.UE 90.7 03/26/94 12:45:20 NOR13PLZC.DAT Run ft 41

PLAY : PENNSYLVANIAN-PERMIAN CONUENTIONAL GAS PROJECT : NAVAL OIL SHALE RESERVES Itt, PICEANCE BASIN, NU COLORADO

INPUT SUMMARY

Play Attribute Probabilities Prospect Attribute Probabilities

Charge: 
Hydrocarbon
Source

0.500

Traps
Potential ! Trapping 

Res. Facies ! Mechanise
Effective Hydrocarbon 
Porosity Accumulation

0.500 1.000 0.600 0.600

Marginal Play Conditional Deposit Reservoir Hydrocarbon Prob. 
Probability Probability Lithology Gas Oil

0.600 0.400

Recovery Factors '/, 
Oil Free Gas

0.150 0.144

Geologic Variables F100 F95

1

F75

1.000

F50

0.000

F25

0.00

F05

8.00

FO

Closure (thousand acres) 1.64500 3.41100 5.26100 6.06100 9.58700 16.5390 30.2080
Thickness (feet) 25.0000 50.0000 100.000 150.000 200.000 300.000 500.000

Porosity (percent) 1.00000 3.00000 5.00000 6.00000 7,00000 9.00000 11.0000
Trap Fill (percent) 5,00000 15.0000 20.0000 25.0000 30.0000 45,0000 60.0000

Depth (thousand feet) 17.0000 18.5000 20.0000 23.5000 24.0000 25.0000 26.0000
HC Saturation (percent) 50.0000 55.0000 60.0000 65.0000 70.0000 75.0000 80.0000

Number of Prospects 1111111

GEOLOGIC VARIABLES and PROBABILITIES OF OCCURRENCE

Closure 
Thickness
Porosity
Trap Fill

Depth
HC Saturation

Prospects
Accumulations

Mean

8. 15237 
161.875
6.00000
26.6250
22.2875
65.0000
1.00000
0. 14400

Variable Function

Std. Oev.

4.94974 
86.8105
1.87972
9.93023
2.30322
6.58231

0,0
0.35109

A B

"Dry Hole" Risk = 0.9784 
Prob, ( Depth <= 7500 fe<

Cond. Prob. Prospect has
Cond. Play Prob.
Uncond. Play Prob.

D(feet) A

^ ) =

Oil
______
0.0000
0.0000
0.0000

B

-0.3167 

    RESO
NA Gas
______
0.1440
0.1440
0.0216

Q(feet)

URCE   
AD Gas
______
0.0000
0.0000
0.0000

A

Gas
______
0.1440
0.1440
0.0216

B D(feet) A B

Pe Linear 0.4200000 14.700000
(PSI)

T Linear 0.0200000 510.00000
(Deg Rankine) 

Rs Linear 0.000 1.0000000
(Thousand CuFt/68L) 

Bo Linear 0.000 1.0000000
(no units) 

2 Linear 0.000 1.0000000
(no units)
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PENHSVLUANIAH-PERMIAN CONVENTIONAL GAS ESTIMATED RESOURCES

OIL
(Millions of BBLs)

Nunber of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

NOH-ASSOCIATED GAS
(Billions of Cuft)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond, (B) Play Potential
Cond. (A) Play Potential

-^Uncond. Play Potential

ASSOCIATED-DISSOLVED GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond. Play Potential

Hean

0.0
0.0
0.0
0.0
0.0
0.0

0.14400
17.0563
2.45613
17.0568
£.45618
0.36343

0.0
0.0
0.0
0.0
0.0
0.0

0. 14400
17.0568
2,45613
17.0568
2.45618
0.36843

Std. Oev.

0.0
0.0
0.0
0.0
0.0
0.0

0.35109
19.7390
9.59001
19.7390
9.59001
3.81634

0.0
0.0
0.0
0.0
0.0
0.0

0.35109
19.7390
9. 5900 1
19.7390
9.59001
3,81634

F95

0
0.0
0.0
0.0
0.0
0.0

0
2.44777

0.0
2.44777

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
2.44777

0,0
2.44777

0,0
0.0

F75

0
0.0
0.0
0.0
0.0
0.0

0
5.93351

0.0
5.98351

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
5.98851

0,0
5.98851

0.0
0.0

F50*

0
0.0
0.0
0.0
0.0
0.0

0
11,1522

0.0
11.1522

0.0
0,0

0
0.0
0.0
0.0
0.0
0.0

0
11.1522

0.0
11.1522

0.0
0.0

F25

0
0.0
0.0
0.0
0.0
0.0

0
20.7684

0.0
20.7684

0.0
0.0

0
0.0
0,0
0.0
0.0
0.0

0
20.7684

0.0
20.7684

0.0
0.0

F05

0
  0,0
0.0
0.0
0.0
0.0

1
50.8101
16.0253
50.8101
16.0258

0.0

0
0.0
0.0
0.0
0.0
0.0

1
50.8101
16.0253
50.8101
16.0258

0.0

YIELD FACTORS

OIL
(Thousand B8L / Acre-Ft) 0.0 

NON-ASSOCIATED GAS
(Million CuFt / Acre-Ft) 0.60681 

DISSOLVED GAS
(Million CuFt / Acre-Ft) 0.0

0.0 0.0 0.0 , * 0.0 0.0 0.0

0.24672 0.29539 0.43177 0,56212 0.73183 1.06971

0,0 0.0 0.0 0.0 0.0 0.0
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EXHIBIT A2 - PESSIMISTIC SCENARIO (#2) 

FASP:UE 90.7 03/36/94 13:03:53 NOR13PLZC.DAT Run ft 32

PLAV : PENNSYLVANIAN-PERMIAN CONUENTIONAL GAS PROJECT : NAUAL OIL SHALE RESERVES 1&3, PICEAHCE BASIN, NW COLORADO

INPUT SUflMARV

CHar ge : 
Hydrocarbon

Source

0.600

Marginal Play 
Probability

0.315

Play Attribute

Traps

0.700

Probabilities

if 4 f. i-. - 4^-L.^-M.
^l^^^^^rt L . I

1.000

Conditional Deposit 
Probability

0.244

Geologic variables F100 F95

Potential 
Res. Facies

0.750

Reservoir 
.ithology

1

F75

Prospect

Trapping 
Mechanise

0.750

Hydrocarbon 
Gas

1.000

F50

Attribute Probabilities

Effective 
Porosity

Prob 
Oil

0.650

Hydrocarbon 
Accumulation

Recovery 
Oil

0.000

F25

M. 00

F05

0.500

Factors '/. 
Free Gas

10.00

FO

Closure (thousand acres) 1.64500 3,41100 5.26100 6.06100 9.53700 16.5890 30.2080
Thickness (feet) 25,0000 50.0000 100.000 150.000 200,000 300,000 500.000

Porosity (percent) 1.00000 3.00000 5.00000 6.00000 7.00000 9.00000 11.0000
Trap Fill (percent) 5.00000 15.0000 20.0000 25.0000 30.0000 45.0000 60.0000

Depth (thousand feet) 17.0000 18.5000 20.0000 23.5000 24.0000 25.0000 26.0000
HC Saturation (percent) 50.0000 55.0000 60.0000 65.0000 70.0000 75.0000 80.0000

Number of Prospects 1111111

GEOLOGIC UARIABLES and PROBABILITIES OF OCCURRENCE

Closure
Thickness 
Porosity
troQ rli.1

Depth
HC Saturation

Prospects
Accumulations

Mean

8. 15237
161.875 
6.00000
26.6250 
22.2875
65.0000
i. 00000
O.E4375

Uariable Function

Std. Dev. "Dry Hole" Risk = 0.9232 
      Prob< ( oepfch <= TSOO feet ) = -0.3167
4.94974
oo. uivii

1.87972
9 930237» 7<2vUW

2.30322 Cond. Prob. Prospect
6.58281 Cond. Play Prob.

0.0 Uncond. Play Prob.
0.42934

A B D(feet) A

IMLwUvIM*!.

Oil Nft Gas AD Gas Gas

has 0.0000 0.2438 0.0000 0.2438
0.0000 0.2438 0.0000 0.2438
0.0000 0.0768 0.0000 0.0768

B O(feet) A B O(feet)

Pe Linear 0.4200000 14.700000
(PSD

T Linear 0.0200000 510.00000
(Deg Rankine) 

Rs Linear 0.000 1.0000000
(Thousand CuFt/BBL) 

Bo Linear 0.000 1.0000000
(no units) 

Z Linear 0.000 1.0000000
(no units)

Depth Floor (feet) = 7500.00
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PENNSYLUANIAN-PERMIAN CONUENTIOHAL 6AS ESTIMATED RESOURCES

OIL
(Millions of B8Ls)

Nunber of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

NON-ASSOCIATED GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

    ̂Uncond. Play Potential

ASSOCIATED-DISSOLVED GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond. Play Potential

Mean

0.0
0.0
0.0
0.0
0.0
0.0

0.24375
21.3210
5. 19699
21.3210
5. 19699
1.63705

0.0
0.0
0.0
0.0
0.0
0.0

0.24375
21.3210
5. 19699
21.3210
5. 19699
1.63705

Std. Dev.

0.0
0.0
0.0
0.0
0.0
0.0

0.42934
24.6733
15.2378
24.6738
15.2373
8.88633

0.0
0.0
0.0
0.0
0.0
0.0

0.42934
24.6733
15.2373
24.6733
15.2378
8.88633

F95

0
0.0
0.0
0.0
0.0
0.0

0
3.05972

0.0
3.05972

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
3.05972

0.0
3.05972

0.0
0.0

F7S

0
0.0
0.0
0.0
0.0
0.0

0
7.48564

0.0
7.48564

0.0
0.0

0
0.0
0.0
0,0
0.0
0.0

0
7.48564

0.0
7.43564

0.0
0.0

F50

0
0.0
0.0
0.0
0.0
0.0

0
13.9402

0.0
13.9402

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
13.9402

0.0
13.9402

0.0
0.0

F2S

0
0.0
0.0
0.0
0.0
0.0

0
25.9604

0.0
25.9604

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
25.9604

0.0
25.9604

0.0
0.0

F05

0
. 0.0
0.0
0.0
0.0
0.0

1
63.5126
29.3301
63.5126
29.8301
9.74537

0
0.0
0.0
0.0
0.0
0.0

1
63.5126
29.8301
63.5126
2-3.8301
9.74537

YIELD FACTORS

OIL
(Thousand BBL / Acre-Ft) 0.0 

NON-ASSOCIATED GAS
(Million CuFt / Acre-Ft) 0.60681 

DISSOLVED GAS
(Million CuFt / Acre-Ft) 0.0

o.o o.o o.o * o'.o o.o o.o
r

0.24672 0.29539 0.43177 0.56212 0.73183 1.06971

0.0 0.0 0.0 0.0 0.0 0.0
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EXHIBIT A3 - MODERATE SCENARIO (//3) 

FASP:HE 90.7 03/26/94 13:16:34 NOR13PL2C.DAT Ron ft 31

PLAY : PENNSYLUAWAN-PERMIAN CCNUENTIOHAL GAS PROJECT : NAUAL OIL SHALE RESERVES 1&3, PICEANCE BASIN, Wd COLORADO

INPUT SUMMARY

Play Attribute Probabilities Prospect Attribute Probabilities

Hydrocarbon 
Source TraP s

0,750 0.750 1.000

Potential ! Trapping
Res, Facias ! Mechanise

0.300 0.750

Effective Hydrocarbon 
Porosity Accumulation

0.750 0.650

Marginal Play Conditional Deposit Reservoir Hydrocarbon Prob. Recovery Factors '/, 
Probability Probability Lithology Gas Oil Oil Free Sas

0.450

Geologic Uariables

0.366

F100 F95

1

F75

1.000

F50

0.000

F25

0.00

F05

12.50

FO

Closure (thousand acres) 1.64500 3.41100 5.26100 6.06100 9.53700 16.5390 30.2080
Thickness (feet) 25.0000 50.0000 100.000 150.000 200.000 300.000 500.000

Porosity (percent) 1.00000 3.00000 5.00000 6.00000 7.00000 9.00000 11.0000
Trap Fill (percent) 5.00000 15.0000 20.0000 25.0000 30.0000 45,0000 60.0000

Depth (thousand feet) 17.0000 13.5000 20.0000 23.5000 24.0000 25.0000 26.0000
HC Saturation (percent) 50.0000 55.0000 60.0000 65.0000 70.0000 75.0000 30.0000

Number of Prospects 1111111

6EOLOGIC UARIABLES and PROBABILITIES OF OCCURRENCE

Closure 
Thickness 
Porosity

Trap Fill 
Depth

HC Saturation
Prospects

Accumulations

Mean

8. 15237 
161.875 
6.00000
26.6250 
22,2875
65.0000
1.00000
0.36563

Std. Oev.

4.94974 
86.8105 
1.87972
Q n^/s'v^

2.
6.

0.

7OVCO

30322
58281

0.0
48160

"Dry Hole" Risk = 0.8355 
Prob. ( Depth <= 7500 feet

Cond.
Cond.
Uncond

Prob. Prospect has 0.
Play Prob.
. Play Prob.

0.
0.

) =

Oil

0000
0000
0000

-0.3167

   RESOURCE    

NA Gas AO Gas

0,3656
0.3656
0. 1645

0.
0.
0.

0000
0000
0000

Gas

0.3656
0.3656
0.1645

Linear 0.4200000 14.700000

variable Function

Pe
(PSI) 

T Linear 0.0200000 510.00000
(Deg Rankine) 

Rs Linear 0.000 1.0000000
(Thousand CuFt/BBL) 

60 Linear 0.000 1.0000000
(no units) 

Z Linear 0.000 1.0000000
(no units)

D(feet) D(feet) D(feet)

Depth Floor (feet) = 7500.00
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PENHSYLVANIAN-PERJ1IAN CONVENTIONAL GAS ESTIMATED RESOURCES

OIL
(MiUions of BBLs)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

NON-ASSOCIATED GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

  ->Uncond. Play Potential

ASSOCIATED-DISSOLVED GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

GAS
(Billions of CuFt)

Nuriber of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond. Play Potential

(lean

0.0
0.0
0.0
0.0
0.0
0.0

0.36563
£6.6512
9.74436
26.6512
9.74436
4.334%

0.0
0,0
0.0
0.0
0.0
0,0

0.36563
26.6512
9.74436
26.6512
9.74436
4.33496

Std. Oev.

0.0
0.0
0.0
0.0
0.0
0.0

0.48160
30.3422
22.6394
30.8422
22.6394
15.9420

0.0
0.0
0.0
0.0
0.0
0.0

0.43160
30.8422
22.6394
30.8422
22.6394
15.9420

F95

0
0.0
0.0
0.0
0.0
0.0

0
3.32465

0.0
3.32465

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
3.82465

0.0
3.82465

0.0
0.0

F75

0
0.0
0.0
0.0
0.0
0.0

0
9.35705

0.0
9.35705

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
9.35705

0.0
9.35705

0.0
0.0

F50

0
0.0
0.0
0.0
0.0
0.0

0
17.4253o.'o
17.4253

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
17.4253

0.0
17.4253

0.0
0.0

F2S

0
0.0
0.0
0.0
0.0
0.0

1
32.4505
11.2176
32.4505
11.2176

0.0

0
0.0
0.0
0.0
0.0
0.0

1
32.4505
11.2176
32.4505
11.2176

0.0

F05

0
  0.0
0.0
0.0
0.0
0.0

1
79.3907
47.3433
79.3907
47.8433
27.9880

0
0.0
0.0
0.0
0.0
0.0

1
79.3907
47.8433
79.3907
47.8433
27.9330

FACTORS

OIL
(Thousand B8L / Acre-Ft) 0.0 

NON-ASSOCIATED GAS
(Million CuFt / Acre-Ft) 0.60681 

DISSOLVED GAS
(Million CuFt / Acre-Ft) 0,0

0.0 0.0 0.0 , * 0.0 0.0 0.0

0.24672 0.29539 0.43177 0.56212 0.73183 1.06971

0.0 0.0 0.0 0.0 0.0 0.0
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EXHIBIT A4 - OPTIMISTIC SCENARIO. (#4) 

FASP:UE 90.7 03/26/94 14:14:01 NOR13PAL2.DAT Run ft 61

PLAV : PENNSYLVANIAN-PERMIAN CONVENTIONAL NAG PROJECT : NAVAL OIL SHALE RESERVES 1&3, OEPT. OF ENERGY NPOSR OFFICE

INPUT SUMMARV

Play Attribute Probabilities Prospect Attribute Probabilities

.. Charge: Hydrocarbon
Source

0.800

Traps

0.!

Potential ! Trapping 
Res. Facies ! Mechanism

Effective Hydrocarbon 
Porosity Accumulation

1.000 0.800 0.800

Marginal Play Conditional Deposit Reservoir Hydrocarbon Pr-ob. 
Probability Probability Lithology Gas Oil

0.650 0.700

Recovery Factors 'A 
Oil Free Gas

0.512 0.364 

Geologic Variables F100

1 

F95 F7S

1.000 

F50

0.000 

F25

0.00 

FOS

15.00 

FO

Closure (thousand acres) 1.64500 3.41100 5.26100 6.06100 9.58700 16.5890 30.2080
Thickness (feet) 25.0000 50.0000 100.000 175.000 250.000 350.000 500.000

Porosity (percent) 1.00000 3.00000 5.00000 6.50000 8.00000 10.0000 12.5000
Trap Fill (percent) 5.00000 15.0000 25.0000 30.0000 35.0000 50.0000 75.0000

Depth (thousand feet) 17.0000 18.5000 20.0000 23,5000 24.0000 25.0000 26.0000
HC Saturation (percent) 50.0000 55.0000 65.0000 70.0000 75.0000 30.0000 85.0000

Number of Prospects 1112222

GEOLOGIC VARIABLES and PROBABILITIES OF OCCURRENCE

Closure 
Thickness
Porosity
Trap Fill

Depth
HC Saturation

Prospects
Accumulations

Mean

8. 15237 
185.625
6.51250
31.1250
22.2875
69.2500
1.50000
0.54600

Variable Function

Std. Dev.

4.94974 
101.610
2.27849
11.6362
2.303S2
7.76343
0.50000
0.61675

A B

"Dry Hole" Risk = 0.8136 
Prob. ( Depth <= 7500 fe>

Cond. Prob. Prospect has
Cond. Play Prob.
Uncond. Play Prob.

D(feet) A

at ) =

Oil

0.0000
0.0000
0.0000

B

-0.3167

    KtsU

HA Gas

0.3640
0.4798
0.2456

O(feet)

UK'-'t

AO Gas

0.0000
0.0000
0.0000

A

Gas

0.3640
0.4798
0.2456

8 .

Pe Linear 0.4200000 14.700000
(PSI)

T Linear 0.0200000 510.00000
(Deg Rankine) 

Rs Linear 0.000 1.0000000
(Thousand CuFt/88L) 

So Linear 0.000 1.0000000
(no units) 

2 Linear 0.000 1.0000000
(no units)

Depth Floor (feet) = 7500.00
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PENNSYLVAHIAH-PERWAN CONUEHTIONAL NftG ESTIMATED RESOURCES

OIL 
(Millions of BBLs)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

NON-ASSOCIATED GAS 
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond. Play Potential

ASSOCIATED-DISSOLVED GAS 
(BiUions of CuFt)

Number of Accumulations
Accumulation Size

Cond, Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

GAS 
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Dsnd. (B) Play Potential
Cond. (A) Play Potential

Uncond. Play Potential

Mean

0.0 
0.0 
0.0 
0.0 
0.0 
0.0

0.54600 
4'?. '17 10 
18.1394 
56.3714 
27.2842 
13.9695

0.0 
0.0 
0.0 
0.0 
0.0 
0.0

0.54600
49.9710
18.1894
56.8714
27.2842
13.9695

Std. Dev.

0.0
0.0
0.0
0.0
0.0
0.0

0.61675
59.6587
43,2854
65.93S1
53.7880
40.8325

0.0
0.0
0.0
0.0
0.0
0.0

0.61675
59.6587
43.2854
65.9381
53.7830
40.8325

F95

0
0.0
0.0
0.0
0.0
0.0

0
6.82162

0.0
8. 13708

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
6.82162

0.0
8.13708

0.0
0.0

F75

0
0.0
0.0
0.0
0.0
0.0

0
17.0063

0.0
19,9300

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
17.0063

0.0
19.9300

0.0
0.0

F50

0
0.0
0.0
0.0
0.0
0.0

0
32.0873

0.0
37.1441

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
32.0873

0.0
37.1441

0.0
0.0

F25

0
0.0
0.0
0.0
0.0
0.0

1
60.5421
20.2989
69.2266
35.4077

0.0

0
0.0
0.0
0.0
0.0
0.0

1
60.5421
20.2989
69.2266
35,4077

0.0

F05

' 0

0.0
0.0
0.0
0.0
0.0

2
150.932
89.7769
169.555
118.906
79,9847

0
0.0
0.0
0.0
0.0
0,0

2
150.932
89.7769
169.555
118.906
79.9347

FACTORS

OIL
(Thousand B8L / Acre-Ft) 0.0 

NON-ASSOCIATED GAS
(Million CuFt / Acre-Ft) 0.70729 

OISSOLUED GAS
(Million CuFt / Acre-Ft) 0.0

0.0 0.0

0.31337 0.32227

0.0 0.0
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EXHIBIT A5 - MOST OPTIMISTIC SCENARIO (#5) 

FASP:UE 90.7 03/25/94 17:53:31 NOR13PAL2.DfiT Run f 52

PLAY : PENNSYLUANIAN-PEPJ1IAN CONUEHTIOHAL NAG PROJECT : NAUAL OIL SHALE RESERVES 1&3, DEPT. OF ENERGY NPOSR OFFICE

INPUT SUMMARY

Play Attribute Probabilities Prospect Attribute Probabilities

Source 

0.300

Traps
Potential ! Trapping 

Res. Facies ! Mechanise
Effective Hydrocarbon 
Porosity Accumulation

0.300 1.000 0,850 0.800 0,650 0.700

Marginal Play Conditional Deposit Reservoir Hydrocarbon Prob, Recovery Factors '/, 
Probability Probability Lithology 6as Oil Oil Free Gas

0.544 0.364 

Geologic Variables F100 F95

1 

F75

1.000 

F50

0.000 

FES

0.00 

F05

15.00 

FO

Closure (thousand acres) 1.64500 3.41100 5.86100
Thickness (feet) £5.0000 50.0000 100.000

Porosity (percent) 1.00000 3,00000 5.00000
Trap Fill (percent) 5.00000 15.0000 85.0000

Depth (thousand feet) 17.0000 18,5000 20.0000
HC Saturation (percent) 50.0000 55.0000 65.0000

Number of Prospects 1 1 2

6,06100 9.53700 16,5890 30.2080
175.000 250.000 350.000 500.000
6.50000 8.00000 10.0000 12.5000
30.0000 35,0000 50.0000 75.0000
23.5000 24,0000 25.0000 26,0000
70.0000

2
75.0000

2
80.0000

2

GEOLOGIC. UARIABLES and PROBABILITIES OF OCCURRENCE

85.0000
3

Mean Std. Dev.

Closure
Thickness
Porosity
Trap Fill

Depth
HC Saturation

Prospects
Accunulations

8. 15237
185.625
6.51250
31.1250
22.2875
69.2500
1.75000
0.63700

4,94974
101.610
2.27849
11.6362
2.30322
7.76343
0.43301
0.65572

"Dry Hole" Risk = 0.8020
Prob. ( Depth <= 7500 feet ) = -0.3167

Oil

Cond. Prob. Prospect has 0.0000
Cond. Play Prob. 0.0000
Uncond. Play Prob. 0.0000

0.3640
0.5376
0.2925

NA Gas AO Gas

0.0000
0.0000
0.0000

Gas

0.3640
0.5376
0.2925

Variable Function D(feet)

Pe Linear 0,4200000 14,700000
(PSI)

T Linear 0.0200000 520,00000
(Deg Rankine) 

Rs Linear 0.000 1.0000000
(Thousand CuFt/BBL) 

Bo Linear 0.000 1.0000000
(no units) 

Z Linear 0.000 1.0000000
(no units)

Depth Floor (feet) = 7500.00

D(feet)
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PENNSYLVANIAH-PERMIAN CONUENTIOHAL HAG ESTIMATED RESOURCES

OIL
(Millions of BSLs)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

NON-ASSOCIATED GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

-^Uncond. Play Potential

ASSOCIATED-DISSOLUED GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond Play Potential

GAS
(Billions of CuFt)

Number of Accumulations
Accumulation Size

Cond. Prospect Potential
Cond. (B) Play Potential
Cond. (A) Play Potential

Uncond. Play Potential

Mean

0.0
0.0
0.0
0.0
0.0
0.0

0.63700
49.4538
18.0012
53.5946
31.5031
17.1371

0.0
0.0
0.0
0.0
0.0
0.0

0.63700
49.4538
18.0013
58.5946
31.5021
17.1371

Std. Oev.

0.0
0.0
0.0
0.0
0.0
0.0

0.65572
59.0441
42.8388
67.0751
57.2040
45.0145

0.0
0.0
0.0
0.0
0,0
0.0

0.65572
59.0441
42.8388
67.0751
57.2040
45.0145

F95

0
0.0
0.0
0.0
0.0
0.0

0
6.75049

0.0
8.55550

0.0
0.0

0
0.0
0.0
0,0
0.0
0.0

0
6.75049

0.0
8.55550

0.0
0.0

F75

0
0.0
0.0
0.0
0.0
0.0

0
16.8295

0.0
20.7945

0.0
0.0

0
0.0
0.0
0.0
0.0
0.0

0
16.8295

0.0
20.7945

0.0
0.0

F50

0
0.0
0.0
0.0
0.0
0.0

1^
31.7544

0.0
38.5490
9.98275

0.0

0
0.0
0.0
0.0
0.0
0.0

1
31.7544

0.0
38.5490
9.98275

0.0

F25

0
0.0
0.0
0.0
0.0
0.0

1
59.9150
20.0830
71.4624
41.7970
14.6460

0
0.0
0.0
0.0
0.0
0.0

1
59.9150
20.0880
71.4624
41.7970
14.6460

FOS

0
0.0
 0.0

0.0
0.0
0.0

2
149.373
88.8482
173.692
129.550
92. 1963

0
0.0
0.0
0.0
0.0
0.0

2
149.373
88.8482
173.692
129.550
92. 1963

YIELD FACTORS

OIL
(Thousand BBL / Acre-Ft) 0,0 

NON-ASSOCIATED GAS
(Million DjiFt / Acre-Ft) 0.69997 

DI3SOLUED GAS
(Million CuFfc / Acre-Ft) 0.0

0.0 0.0 0.0 * O.-O 0.0 0.0
T

0.31018 0.31889 0.48096 0.63995 0.85149 1.28425 

O.o 0.0 0.0 0.0 0.0 0.0
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